Echolocation can be used by blind and sighted humans to navigate their environment. The current study investigated the neural activity underlying processing of path direction during walking. Brain activity was measured with fMRI in three blind echolocation experts, and three blind and three sighted novices. During scanning, participants listened to binaural recordings that had been made prior to scanning while echolocation experts had echolocated during walking along a corridor which could continue to the left, right, or straight ahead. Participants also listened to control sounds that contained ambient sounds and clicks, but no echoes. The task was to decide if the corridor in the recording continued to the left, right, or straight ahead, or if they were listening to a control sound. All participants successfully dissociated echo from no echo sounds, however, echolocation experts were superior at direction detection. We found brain activations associated with processing of path direction (contrast: echo vs. no echo) in superior parietal lobule (SPL) and inferior frontal cortex in each group. In sighted novices, additional activation occurred in the inferior parietal lobule (IPL) and middle and superior frontal areas. Within the framework of the dorso-dorsal and ventro-dorsal pathway proposed by Rizzolatti and Matelli (2003), our results suggest that blind participants may automatically assign directional meaning to the echoes, while sighted participants may apply more conscious, high-level spatial processes. High similarity of SPL and IFC activations across all three groups, in combination with previous research, also suggest that all participants recruited a multimodal spatial processing system for action (here: locomotion).
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aminoff E. M., Kveraga K., Bar M. (2013). The role of parahippocampal cortex in cognition, Trends Cogn. Sci. 17, 379–390.
Ammons C. H., Worchel P., Dallenbach K. M. (1953). “Facial vision”: the perception of obstacles out of doors by blindfolded and blindfolded-deafened subjects, Am. J. Psychol. 66, 519–553.
Arnott S. R., Binns M. A., Grady C. L., Alain C. (2004). Assessing the auditory dual-pathway model in humans, Neuroimage 22, 401–408.
Arnott S. R., Thaler L., Milne J. L., Kish D., Goodale M. A. (2013). Shape-specific activation of occipital cortex in an early blind echolocation expert, Neuropsychologia 51, 938–949.
Bach-y-Rita P., Kercel S. W. (2003). Sensory substitution and the human–machine interface, Trends Cogn. Sci. 7, 541–546.
Bavelier D., Neville H. J. (2002). Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452.
Brabyn J. A. (1982). New developments in mobility and orientation aids for the blind, IEEE Trans. Biom. Eng. 29, 285–289.
Brown B., Brabyn J. A. (1987). Mobility and low vision: a review, Clin. Exp. Optom. 70, 96–101.
Büchel C. (1998). Functional neuroimaging studies of braille reading: cross-modal reorganization and its implications, Brain 121, 1193–1194.
Burton H. (2003). Visual cortex activity in early and late blind people, J. Neurosci. 23, 4005–4011.
Carlson-Smith C., Wiener W. R. (1996). The auditory skills necessary for echolocation: a new explanation, J. Vis. Impair. Blind. 90, 21–35.
Chan C. C. H., Wong A. W. K., Ting K.-H., Whitfield-Gabrieli S., He J., Lee T. M. C. (2012). Cross auditory–spatial learning in early-blind individuals, Hum. Brain Mapp. 33, 2714–2727.
Claude A., He Y., Grady C. (2008). The contribution of the inferior parietal lobe to auditory spatial working memory, J. Cogn. Sci. 20, 285–295.
Cohen L. G., Celnik P., Pascual-Leone A., Corwell B., Falz L., Dambrosia J., Honda M., Sadato N., Gerloff C., Catalá M. D., Hallett M. (1997). Functional relevance of cross-modal plasticity in blind humans, Nature 389, 180–183.
Collignon O., Lassonde M., Lepore F., Bastien D., Veraart C. (2007). Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects, Cereb. Cortex 17, 457–465.
Collignon O., Davare M., Olivier E., De Volder A. G. (2009a). Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study, Brain Topogr. 21, 232–240.
Collignon O., Voss P., Lassonde M., Lepore F. (2009b). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects, Exp. Brain Res. 192, 343–358.
Collignon O., Vandewalle G., Voss P., Albouy G., Charbonneau G., Lassonde M., Lepore F. (2011). Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humans, Proc. Natl Acad. Sci. USA 108, 4435–4440.
Cotzin M., Dallenbach K. M. (1950). ‘Facial vision’: the role of pitch and loudness in the perception of obstacles by the blind, Am. J. Psychol. 63, 485–515.
Deiaune W. (1992). Low vision mobility problems — perceptions of O-and-M specialists and persons with low vision, J. Vis. Impair. Blind. 86, 58–62.
Deouell L. Y., Heller A. S., Malach R., D’Esposito M., Knight R. T. (2007). Cerebral responses to change in spatial location of unattended sounds, Neuron 55, 985–996.
Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., Buckner R. L., Dale A. M., Maguire R. P., Hyman B. T., Albert M. S., Killiany R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage 31, 968–980.
Eickhoff S. B., Paus T., Caspers S., Grosbras M.-H., Evans A. C., Zilles K., Amunts K. (2007). Assignment of functional activations to probabilistic cytoarchitectonic areas revisited, Neuroimage 36, 511–521.
Goldreich D., Kanics I. M. (2003). Tactile acuity is enhanced in blindness, J. Neurosci. 23, 3439–3445.
Goodale M. A., Milner A. D. (1992). Separate visual pathways for perception and action, Trends Neurosci. 15, 20–25.
Goodale M. A., Milner A. D., Jakobson L. S., Carey D. P. (1991). A neurological dissociation between perceiving objects and grasping them, Nature 349, 154–156.
Gori M., Sandini G., Martinoli C., Burr D. C. (2013). Impairment of auditory spatial localization in congenitally blind human subjects, Brain 137, 288–293.
Gougoux F., Zatorre R. J., Lassonde M., Voss P., Lepore F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals, PLoS Biol. 3, e27. DOI:10.1371/journal.pbio.0030027.
Grant A. C., Thiagarajah M. C., Sathian K. (2000). Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns, Percept. Psychophys. 62, 301–312.
Greve D. N., Fischl B. (2009). Accurate and robust brain image alignment using boundary-based registration, Neuroimage 48, 63–72.
Griffin D. R. (1944). Echolocation by blind men, bats and radar, Science 100(2609), 589–590.
Griffiths T. D., Warren J. D. (2002). The planum temporale as a computational hub, Trends Neurosci. 25, 348–353.
Grunwald J.-E., Schörnich S., Wiegrebe L. (2004). Classification of natural textures in echolocation, Proc. Natl Acad. Sci. USA 101, 5670–5674.
Hall D. A., Haggard M. P., Akeroyd M. A., Palmer A. R., Summerfield A. Q., Elliott M. R., Gurney E. M., Bowtell R. W. (1999). Sparse temporal sampling in auditory fMRI, Hum. Brain Mapp. 7, 213–223.
Hartley T., Lever C., Burgess N., O’Keefe J. (2014). Space in the brain: How the hippocampal formation supports spatial cognition, Philos. Trans. R. Soc. B Biol. Sci. 369(1635), 20120510. DOI:10.1098/rstb.2012.0510.
Hausfeld S., Power R. P., Gorta A., Harris P. (1982). Echo perception of shape and texture by sighted subjects, Percept. Mot. Skills 55, 623–632.
Heilman K. M., Valenstein E., Watson R. T. (2000). Neglect and related disorders, Semin. Neurol. 20, 463–470.
Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images, Neuroimage 17, 825–841.
Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., Smith S. M. (2012). FSL, Neuroimage 62, 782–790.
Johnson S. H., Grafton S. T. (2003). From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata, Prog. Brain Res. 142, 127–139.
Kaas J. H., Hackett T. A. (1999). ‘What’ and ‘where’ processing in auditory cortex, Nat. Neurosci. 2, 1045–1047.
Karnath H.-O., Perenin M.-T. (2005). Cortical control of visually guided reaching: evidence from patients with optic ataxia, Cereb. Cortex 15, 1561–1569.
Kolarik A. J., Cirstea S., Pardhan S., Moore B. C. J. (2014). A summary of research investigating echolocation abilities of blind and sighted humans, Hear. Res. 310, 60–68.
Krumbholz K., Schönwiesner M., Rübsamen R., Zilles K., Fink G. R., von Cramon D. Y. (2005). Hierarchical processing of sound location and motion in the human brainstem and planum temporale, Eur. J. Neurosci. 21, 230–238.
Kupers R., Chebat D. R., Madsen K. H., Paulson O. B., Ptito M. (2010). Neural correlates of virtual route recognition in congenital blindness, Proc. Natl Acad. Sci. USA 107, 12716–12721.
Lessard N., Pare M., Lepore F., Lassonde M. (1998). Early-blind human subjects localize sound sources better than sighted subjects, Nature 395(6699), 278–280.
Lingnau A., Strnad L., He C., Fabbri S., Han Z., Bi Y., Caramazza A. (2014). Cross-modal plasticity preserves functional specialization in posterior parietal cortex, Cereb. Cortex 24, 541–549.
Long R. G. (1990). Orientation and mobility research: what is known and what needs to be known, Peabody J. Educ. 67, 89–109.
Long R. G., Rieser J. J., Hill E. W. (1990). Mobility in individuals with moderate visual impairments, J. Vis. Impair. Blind. 84, 111–118.
Merabet L. B., Pascual-Leone A. (2010). Neural reorganization following sensory loss: the opportunity of change, Nat. Rev. Neurosci. 11, 44–52.
Milne J. L., Goodale M. A., Thaler L. (2014a). The role of head movements in the discrimination of 2-d shape by blind echolocation experts, Atten. Percept. Psychophys. 76, 1828–1837.
Milne J. L., Goodale M. A., Arnott S. R., Kish D., Thaler L. (2014b). Parahippocampal cortex is involved in material processing through echolocation in blind echolocation experts, Vis. Res. DOI:10.1016/j.visres.2014.07.004.
Milner A. D., Goodale M. A. (1995). The Visual Brain in Action. Oxford University Press, Oxford, UK.
Noppeney U. (2007). The effects of visual deprivation on functional and structural organization of the human brain, Neurosci. Biobehav. Rev. 31, 598–609.
Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory, Neuropsychologia 9, 97–113.
Pisella L., Sergio L., Blangero A., Torchin H., Vighetto A., Rossetti Y. (2009). Optic ataxia and the function of the dorsal stream: contributions to perception and action, Neuropsychologia 47, 3033–3044.
Raab D. H., Taub H. B. (1969). Click intensity discrimination with and without a background masking noise, J. Acoust. Soc. Am. 46, 965–968.
Rauschecker J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration, Hear. Res. 271, 16–25.
Rauschecker J. P., Tian B. (2000). Mechanisms and streams for processing of what and where in auditory cortex, Proc. Natl Acad. Sci. USA 97, 11800–11806.
Rice C. E., Feinstein S. H. (1965). Sonar system of the blind: size discrimination, Science 148, 1107–1108.
Rice C. E., Feinstein S. H., Schusterman R. J. (1965). Echo-detection ability of the blind: size and distance factors, J. Exp. Psychol. 70, 246–251.
Rizzolatti G., Matelli M. (2003). Two different streams form the dorsal visual system: anatomy and functions, Exp. Brain Res. 153, 146–157.
Röder B., Rösler F. (2004). Compensatory plasticity as a consequence of sensory loss, in: The Handbook of Multisensory Processes, Calvert G., Spence C., Stein B. E. (Eds), pp. 719–747. MIT Press, Cambridge, MA, USA.
Röder B., Teder-Sälejärvi W., Sterr A., Rösler F., Hillyard S. A., Neville H. J. (1999). Improved auditory spatial tuning in blind humans, Nature 400, 162–166.
Roentgen U. R., Gelderblom G. J., Soede M., de Witte L. P. (2009). The impact of electronic mobility devices for persons who are visually impaired: a systematic review of effects and effectiveness, J. Vis. Impair. Blind. 103, 743–753.
Rosenblum L. D., Gordon M. S., Jarquin L. (2000). Echolocating distance by moving and stationary listeners, Ecol. Psychol. 12, 181–206.
Sadato N., Pascual-Leone A., Grafman J., Ibañez V., Deiber M. P., Dold G., Hallett M. (1996). Activation of the primary visual cortex by braille reading in blind subjects, Nature 380, 526–528.
Salive M. E., Guralnik J., Glynn R. J., Christen W. (1994). Association of visual impairment with mobility and physical function, J. Am. Geriatr. Soc. 42, 287–292.
Schenkman B. N., Nilsson M. E. (2010). Human echolocation: blind and sighted persons’ ability to detect sounds recorded in the presence of a reflecting object, Perception 39, 483–501.
Schnitzler H. U., Moss C. F., Denzinger A. (2003). From spatial orientation to food acquisition in echolocating bats, Trends Ecol. Evol. 18, 386–394.
Schörnich S., Wallmeier L., Gessele N., Nagy A., Schranner M., Kish D., Wiegrebe L. (2013). Psychophysics of human echolocation, in: Basic Aspects of Hearing, Moore B. C. J., Patterson R. D., Winter I. M., Carlyon R. P., Gockel H. E. (Eds), pp. 311–319. Springer, New York, NY, USA.
Silk T. J., Bellgrove M. A., Wrafter P., Mattingley J. B., Cunnington R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus, Neuroimage 53, 718–724.
Stoffregen T. A., Pittenger J. B. (1995). Human echolocation as a basic form of perception and action, Ecol. Psychol. 7, 181–216.
Supa M., Cotzin M., Dallenbach K. M. (1944). “Facial vision”: the perception of obstacles by the blind, Am. J. Psychol. 57, 133–183.
Teng S., Whitney D. (2011). The acuity of echolocation: spatial resolution in the sighted compared to expert performance, J. Vis. Impair. Blind. 105, 20–32.
Teng S., Puri A., Whitney D. (2012). Ultrafine spatial acuity of blind expert human echolocators, Exp. Brain Res. 216, 483–488.
Thaler L. (2013). Echolocation may have real-life advantages for blind people: an analysis of survey data, Front. Physiol. 4, 98. DOI:10.3389/fphys.2013.00098.
Thaler L., Arnott S. R., Goodale M. A. (2011). Neural correlates of natural human echolocation in early and late blind echolocation experts, PLoS One 6, e20162. DOI:10.1371/journal.pone.0020162.
Thaler L., Milne J. L., Arnott S. R., Kish D., Goodale M. A. (2014). Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices, J. Neurophysiol. 111, 112–127.
Thomas J. A., Moss C. F., Vater M. (2004). Echolocation in Bats and Dolphins. University of Chicago Press, Chicago, IL, USA.
Ungerleider L. G., Mishkin M. (1982). Two cortical visual systems, in: Analysis of Visual Behaviour, Ingle D. J., Goodale M. A., Mansfeld R. J. W. (Eds), pp. 549–586. MIT Press, Cambridge, MA, USA.
Vallar G., Perani D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man, Neuropsychologia 24, 609–622.
Van Boven R. W., Hamilton R. H., Kauffman T., Keenan J. P., Pascual-Leone A. (2000). Tactile spatial resolution in blind braille readers, Neurology 54, 2230–2236.
Vercillo T., Milne J. L., Gori M., Goodale M. A. (2015). Enhanced auditory spatial localization in blind echolocators, Neuropsychologia 67, 35–40.
Voss P., Lassonde M., Gougoux F., Fortin M., Guillemot J.-P., Lepore F. (2004). Early- and late-onset blind individuals show supra-normal auditory abilities in far-space, Curr. Biol. 14, 1734–1738.
Wallmeier L., Geßele N., Wiegrebe L. (2013). Echolocation versus echo suppression in humans, Proc. R. Soc. B Biol. Sci. 280(1769), 20131428. DOI:10.1098/rspb.2013.1428.
Weissenbacher P., Wiegrebe L. (2003). Classification of virtual objects in the echolocating bat, Megaderma lyra, Behav. Neurosci. 117, 833–839.
Westwood D. A., Danckert J., Servos P., Goodale M. A. (2002). Grasping two-dimensional images and three-dimensional objects in visual-form agnosia, Exp. Brain Res. 144, 262–267.
Wong M., Gnanakumaran V., Goldreich D. (2011). Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms, J. Neurosci. 31, 7028–7037.
Worchel P., Mauney J. (1951). The effect of practice on the perception of obstacles by the blind, J. Exp. Psychol. 41, 170–176.
Zwiers M. P., van Opstal A. J., Cruysberg J. R. (2001). A spatial hearing deficit in early-blind humans, J. Neurosci. 21, RC142: 1–5.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1765 | 270 | 44 |
Full Text Views | 357 | 40 | 1 |
PDF Views & Downloads | 245 | 16 | 2 |
Echolocation can be used by blind and sighted humans to navigate their environment. The current study investigated the neural activity underlying processing of path direction during walking. Brain activity was measured with fMRI in three blind echolocation experts, and three blind and three sighted novices. During scanning, participants listened to binaural recordings that had been made prior to scanning while echolocation experts had echolocated during walking along a corridor which could continue to the left, right, or straight ahead. Participants also listened to control sounds that contained ambient sounds and clicks, but no echoes. The task was to decide if the corridor in the recording continued to the left, right, or straight ahead, or if they were listening to a control sound. All participants successfully dissociated echo from no echo sounds, however, echolocation experts were superior at direction detection. We found brain activations associated with processing of path direction (contrast: echo vs. no echo) in superior parietal lobule (SPL) and inferior frontal cortex in each group. In sighted novices, additional activation occurred in the inferior parietal lobule (IPL) and middle and superior frontal areas. Within the framework of the dorso-dorsal and ventro-dorsal pathway proposed by Rizzolatti and Matelli (2003), our results suggest that blind participants may automatically assign directional meaning to the echoes, while sighted participants may apply more conscious, high-level spatial processes. High similarity of SPL and IFC activations across all three groups, in combination with previous research, also suggest that all participants recruited a multimodal spatial processing system for action (here: locomotion).
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1765 | 270 | 44 |
Full Text Views | 357 | 40 | 1 |
PDF Views & Downloads | 245 | 16 | 2 |