The interaction of every living organism with its environment relies on sensory abilities. Hence, sensory systems need to develop rapidly and early in life to guarantee an individual’s survival. Sensors have to emerge that are equipped with receptors that detect a variety of stimuli. These sensors have to be wired in basic interconnected networks that possess the ability to process the uni- as well as multisensory information encoded in the sensory input. Plastic changes to refine and optimize these circuits need to be effected quickly during periods of sensory experience so that uni- and multisensory systems can rapidly achieve the functional maturity needed to support the perceptual and behavioral functions reliant upon them. However, the requirement that sensory abilities mature quickly during periods of enhanced neuroplasticity is at odds with the complexity of sensory networks. Neuronal assemblies within sensory networks must be precisely wired so that processing and coding mechanisms can render relevant stimuli more salient and bind features together appropriately. Focusing on animal research, the first part of this review describes mechanisms of sensory processing that show a high degree of similarity within and between sensory systems and highlight the network complexity in relationship to the temporal and spatial precision that is needed for optimal coding and processing of sensory information. Given the resemblance of most adult intra- and intersensory coding mechanisms, it is likely that their developmental principles are similar. The second part of the review focuses on developmental aspects, summarizing the mechanisms underlying the emergence and refinement of precisely coordinated neuronal and multisensory functioning. For this purpose, we review animal research that elucidates the neural substrate of multisensory development applicable to, the less accessible, human development. Animal studies in this field have not only complemented human studies, but brought new ideas and numerous cutting edge conclusions leading to the discovery of common principles and mechanisms.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ackman J. B., Burbridge T. J., Crair M. C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system, Nature 490, 219–225.
Adams D. L., Horton J. C. (2002). Shadows cast by retinal blood vessels mapped in primary visual cortex, Science 298, 572–576.
Ainsworth M., Lee S., Cunningham M. O., Traub R. D., Kopell N. J., Whittington M. A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks, Neuron 75, 572–583.
Alais D., Burr D. (2004). The ventriloquist effect results from near-optimal bimodal integration, Curr. Biol. 14, 257–262.
Allen C. B., Celikel T., Feldman D. E. (2003). Long-term depression induced by sensory deprivation during cortical map plasticity in vivo, Nat. Neurosci. 6, 291–299.
Alvarado J. C., Vaughan J. W., Stanford T. R., Stein B. E. (2007a). Multisensory versus unisensory integration: contrasting modes in the superior colliculus, J. Neurophysiol. 97, 3193–3205.
Alvarado J. C., Stanford T. R., Vaughan J. W., Stein B. E. (2007b). Cortex mediates multisensory but not unisensory integration in superior colliculus, J. Neurosci. 27, 12775–12786.
Alvarado J. C., Rowland B. A., Stanford T. R., Stein B. E. (2008). A neural network model of multisensory integration also accounts for unisensory integration in superior colliculus, Brain Res. 1242, 13–23.
Alvarado J. C., Stanford T. R., Rowland B. A., Vaughan J. W., Stein B. E. (2009). Multisensory integration in the superior colliculus requires synergy among corticocollicular inputs, J. Neurosci. 29, 6580–6592.
Anastasio T. J., Patton P. E., Belkacem-Boussaid K. (2000). Using Bayes’ rule to model multisensory enhancement in the superior colliculus, Neural Comput. 12, 1165–1187.
Antonini A., Stryker M. P. (1993). Rapid remodeling of axonal arbors in the visual cortex, Science 260, 1819–1821.
Arieli A., Sterkin A., Grinvald A., Aertsen A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses, Science 273, 1868–1871.
Bavelier D., Neville H. J. (2002). Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452.
Beer A. L., Plank T., Greenlee M. W. (2011). Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex, Exp. Brain Res. 213, 299–308.
Benedetti F. (1995). Differential formation of topographic maps on the cerebral cortex and superior colliculus of the mouse by temporally correlated tactile–tactile and tactile–visual inputs, Eur. J. Neurosci. 7, 1942–1951.
Bi G., Poo M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited, Annu. Rev. Neurosci. 24, 139–166.
Bizley J. K., King A. J. (2008). Visual–auditory spatial processing in auditory cortical neurons, Brain. Res. 1242, 24–36.
Bizley J. K., Nodal F. R., Bajo V. M., Nelken I., King A. J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex, Cereb. Cortex 17, 2172–2189.
Bizley J. K., Walker K. M., King A. J., Schnupp J. W. (2010). Neural ensemble codes for stimulus periodicity in auditory cortex, J. Neurosci. 30, 5078–5091.
Brett-Green B., Fifkova E., Larue D. T., Winer J. A., Barth D. S. (2003). A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections, J. Comp. Neurol. 460, 223–237.
Budinger E., Heil P., Hess A., Scheich H. (2006). Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems, Neuroscience 143, 1065–1083.
Burnett L. R., Stein B. E., Chaponis D., Wallace M. T. (2004). Superior colliculus lesions preferentially disrupt multisensory orientation, Neuroscience 124, 535–547.
Buzsaki G. (2006). Rhythms of the Brain. Oxford University Press, Oxford, UK.
Bystron I., Blakemore C., Rakic P. (2008). Development of the human cerebral cortex: Boulder Committee revisited, Nat. Rev. Neurosci. 9, 110–122.
Campi K. L., Bales K. L., Grunewald R., Krubitzer L. (2010). Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas, Cereb. Cortex 20, 89–108.
Cang J., Feldheim D. A. (2013). Developmental mechanisms of topographic map formation and alignment, Annu. Rev. Neurosci. 36, 51–77.
Cappe C., Barone P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey, Eur. J. Neurosci. 22, 2886–2902.
Carvell G. E., Simons D. J. (1996). Abnormal tactile experience early in life disrupts active touch, J. Neurosci. 16, 2750–2757.
Chang E. F., Merzenich M. M. (2003). Environmental noise retards auditory cortical development, Science 300, 498–502.
Chen Y., Flanagan J. G. (2006). Follow your nose: axon pathfinding in olfactory map formation, Cell 127, 881–884.
Clavagnier S., Falchier A., Kennedy H. (2004). Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness, Cogn. Affect. Behav. Neurosci. 4, 117–126.
Crair M. C., Gillespie D. C., Stryker M. P. (1998). The role of visual experience in the development of columns in cat visual cortex, Science 279, 566–570.
Cramer K. S. (2005). Eph proteins and the assembly of auditory circuits, Hear. Res. 206, 42–51.
Crowley J. C., Katz L. C. (1999). Development of ocular dominance columns in the absence of retinal input, Nat. Neurosci. 2, 1125–1130.
Cuppini C., Ursino M., Magosso E., Rowland B. A., Stein B. E. (2010). An emergent model of multisensory integration in superior colliculus neurons, Front. Integr. Neurosci. 4, 6.
Cuppini C., Stein B. E., Rowland B. A., Magosso E., Ursino M. (2011). A computational study of multisensory maturation in the superior colliculus, Exp. Brain Res. 213, 341–349.
Cuppini C., Magosso E., Rowland B., Stein B., Ursino M. (2012). Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model, Biol. Cybern. 106, 691–713.
Dews P. B., Wiesel T. N. (1970). Consequences of monocular deprivation on visual behaviour in kittens, J. Physiol. 206, 437–455.
Donner T. H., Siegel M. (2011). A framework for local cortical oscillation patterns, Trends Cogn. Sci. 15, 191–199.
Driver J., Noesselt T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments, Neuron 57, 11–23.
Edwards S. B., Ginsburgh C. L., Henkel C. K., Stein B. E. (1979). Sources of subcortical projections to the superior colliculus in the cat, J. Comp. Neurol. 184, 309–329.
Einevoll G. T., Kayser C., Logothetis N. K., Panzeri S. (2013). Modelling and analysis of local field potentials for studying the function of cortical circuits, Nat. Rev. Neurosci. 14, 770–785.
Erzurumlu R. S., Gaspar P. (2012). Development and critical period plasticity of the barrel cortex, Eur. J. Neurosci. 35, 1540–1553.
Fagiolini M., Pizzorusso T., Berardi N., Domenici L., Maffei L. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation, Vis. Res. 34, 709–720.
Falchier A., Clavagnier S., Barone P., Kennedy H. (2002). Anatomical evidence of multimodal integration in primate striate cortex, J. Neurosci. 22, 5749–5759.
Feldheim D. A., Vanderhaeghen P., Hansen M. J., Frisen J., Lu Q., Barbacid M., Flanagan J. G. (1998). Topographic guidance labels in a sensory projection to the forebrain, Neuron 21, 1303–1313.
Feldman D. E. (2012). The spike-timing dependence of plasticity, Neuron 75, 556–571.
Felleman D. J., Van Essen D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1, 1–47.
Feller M. B. (1999). Spontaneous correlated activity in developing neural circuits, Neuron 22, 653–656.
Feller M. B., Wellis D. P., Stellwagen D., Werblin F. S., Shatz C. J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves, Science 272, 1182–1187.
Fetsch C. R., Pouget A., DeAngelis G. C., Angelaki D. E. (2012). Neural correlates of reliability-based cue weighting during multisensory integration, Nat. Neurosci. 15, 146–154.
Fetsch C. R., DeAngelis G. C., Angelaki D. E. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons, Nat. Rev. Neurosci. 14, 429–442.
Fox K., Wong R. O. (2005). A comparison of experience-dependent plasticity in the visual and somatosensory systems, Neuron 48, 465–477.
Fries P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation, Annu. Rev. Neurosci. 32, 209–224.
Fries P., Neuenschwander S., Engel A. K., Goebel R., Singer W. (2001a). Rapid feature selective neuronal synchronization through correlated latency shifting, Nat. Neurosci. 4, 194–200.
Fries P., Reynolds J. H., Rorie A. E., Desimone R. (2001b). Modulation of oscillatory neuronal synchronization by selective visual attention, Science 291, 1560–1563.
Frisen J., Yates P. A., McLaughlin T., Friedman G. C., O’Leary D. D., Barbacid M. (1998). Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system, Neuron 20, 235–243.
Frost D. O., Boire D., Gingras G., Ptito M. (2000). Surgically created neural pathways mediate visual pattern discrimination, Proc. Natl Acad. Sci. USA 97, 11068–11073.
Galli L., Maffei L. (1988). Spontaneous impulse activity of rat retinal ganglion cells in prenatal life, Science 242, 90–91.
Gerstner W., Ritz R., Van Hemmen J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns, Biol. Cybern. 69, 503–515.
Ghazanfar A. A., Schroeder C. E. (2006). Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285.
Ghoshal A., Pouget P., Popescu M., Ebner F. (2009). Early bilateral sensory deprivation blocks the development of coincident discharge in rat barrel cortex, J. Neurosci. 29, 2384–2392.
Ghoshal A., Tomarken A., Ebner F. (2011). Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience, J. Neurosci. 31, 2526–2536.
Gödecke I., Kim D. S., Bonhoeffer T., Singer W. (1997). Development of orientation preference maps in area 18 of kitten visual cortex, Eur. J. Neurosci. 9, 1754–1762.
Goodman C. S., Shatz C. J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity, Cell 72(Suppl.), 77–98.
Gordon J. A., Stryker M. P. (1996). Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse, J. Neurosci. 16, 3274–3286.
Gray C. M., König P., Engel A. K., Singer W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature 338, 334–337.
Groh J. M., Sparks D. L. (1996a). Saccades to somatosensory targets. II. Motor convergence in primate superior colliculus, J. Neurophysiol. 75, 428–438.
Groh J. M., Sparks D. L. (1996b). Saccades to somatosensory targets. III. Eye-position-dependent somatosensory activity in primate superior colliculus, J. Neurophysiol. 75, 439–453.
Hackett T. A., Stepniewska I., Kaas J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys, J. Comp. Neurol. 394, 475–495.
Hackett T. A., De La Mothe L. A., Ulbert I., Karmos G., Smiley J., Schroeder C. E. (2007). Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane, J. Comp. Neurol. 502, 924–952.
Hanganu I. L., Ben-Ari Y., Khazipov R. (2006). Retinal waves trigger spindle bursts in the neonatal rat visual cortex, J. Neurosci. 26, 6728–6736.
Hanganu-Opatz I. L. (2010). Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities, Brain Res. Rev. 64, 160–176.
Hanover J. L., Huang Z. J., Tonegawa S., Stryker M. P. (1999). Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex, J. Neurosci. 19, RC40.
Hashikawa T., Rausell E., Molinari M., Jones E. G. (1991). Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections, Brain Res. 544, 335–341.
Hensch T. K. (2005). Critical period plasticity in local cortical circuits, Nat. Rev. Neurosci. 6, 877–888.
Hofer S. B., Mrsic-Flogel T. D., Bonhoeffer T., Hübener M. (2009). Experience leaves a lasting structural trace in cortical circuits, Nature 457, 313–317.
Horton J. C., Hocking D. R. (1996). An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience, J. Neurosci. 16, 1791–1807.
Huang Z. J., Kirkwood A., Pizzorusso T., Porciatti V., Morales B., Bear M. F., Maffei L., Tonegawa S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex, Cell 98, 739–755.
Hubel D. H., Wiesel T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. 148, 574–591.
Hubel D. H., Wiesel T. N. (1963). Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26, 994–1002.
Hubel D. H., Wiesel T. N. (1968). Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195, 215–243.
Huberman A. D., Speer C. M., Chapman B. (2006). Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1, Neuron 52, 247–254.
Huerta M. F., Harting J. K. (1982). The projection from the nucleus of the posterior commissure to the superior colliculus of the cat: patch-like endings within the intermediate and deep grey layers, Brain Res. 238, 426–432.
Iurilli G., Ghezzi D., Olcese U., Lassi G., Nazzaro C., Tonini R., Tucci V., Benfenati F., Medini P. (2012). Sound-driven synaptic inhibition in primary visual cortex, Neuron 73, 814–828.
Iwai Y., Fagiolini M., Obata K., Hensch T. K. (2003). Rapid critical period induction by tonic inhibition in visual cortex, J. Neurosci. 23, 6695–6702.
Izraeli R., Koay G., Lamish M., Heicklen-Klein A. J., Heffner H. E., Heffner R. S., Wollberg Z. (2002). Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour, Eur. J. Neurosci. 15, 693–712.
Jay M. F., Sparks D. L. (1987a). Sensorimotor integration in the primate superior colliculus. I. Motor convergence, J. Neurophysiol. 57, 22–34.
Jay M. F., Sparks D. L. (1987b). Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals, J. Neurophysiol. 57, 35–55.
Jiang W., Stein B. E. (2003). Cortex controls multisensory depression in superior colliculus, J. Neurophysiol. 90, 2123–2135.
Jiang W., Wallace M. T., Jiang H., Vaughan J. W., Stein B. E. (2001). Two cortical areas mediate multisensory integration in superior colliculus neurons, J. Neurophysiol. 85, 506–522.
Jiang W., Jiang H., Stein B. E. (2002). Two corticotectal areas facilitate multisensory orientation behavior, J. Cogn. Neurosci. 14, 1240–1255.
Jiang W., Jiang H., Stein B. E. (2006). Neonatal cortical ablation disrupts multisensory development in superior colliculus, J. Neurophysiol. 95, 1380–1396.
Jiang W., Jiang H., Rowland B. A., Stein B. E. (2007). Multisensory orientation behavior is disrupted by neonatal cortical ablation, J. Neurophysiol. 97, 557–562.
Jitsuki S., Takemoto K., Kawasaki T., Tada H., Takahashi A., Becamel C., Sano A., Yuzaki M., Zukin R. S., Ziff E. B., Kessels H. W., Takahashi T. (2011). Serotonin mediates cross-modal reorganization of cortical circuits, Neuron 69, 780–792.
Kaas J. H. (1997). Topographic maps are fundamental to sensory processing, Brain Res. Bull. 44, 107–112.
Kadunce D. C., Vaughan J. W., Wallace M. T., Stein B. E. (2001). The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus, Exp. Brain Res. 139, 303–310.
Kang E., Durand S., Leblanc J. J., Hensch T. K., Chen C., Fagiolini M. (2013). Visual acuity development and plasticity in the absence of sensory experience, J. Neurosci. 33, 17789–17896.
Katz L. C., Crowley J. C. (2002). Development of cortical circuits: lessons from ocular dominance columns, Nat. Rev. Neurosci. 3, 34–42.
Kayser C., Logothetis N. K. (2007). Do early sensory cortices integrate cross-modal information? Brain Struct. Funct. 212, 121–132.
Kayser C., Logothetis N. K. (2009). Directed interactions between auditory and superior temporal cortices and their role in sensory integration, Front. Integr. Neurosci. 3, 7.
Kayser C., Petkov C. I., Logothetis N. K. (2008). Visual modulation of neurons in auditory cortex, Cereb. Cortex 18, 1560–1574.
Kayser C., Logothetis N. K., Panzeri S. (2010). Millisecond encoding precision of auditory cortex neurons, Proc. Natl Acad. Sci. USA 107, 16976–16981.
King A. J., Palmer A. R. (1983). Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: distribution and response properties, J. Physiol. 342, 361–381.
Knudsen E. I., Knudsen P. F., Esterly S. D. (1984). A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl, J. Neurosci. 4, 1012–1020.
Kourtzi Z., Connor C. E. (2011). Neural representations for object perception: structure, category, and adaptive coding, Annu. Rev. Neurosci. 34, 45–67.
Kral A. (2013). Auditory critical periods: a review from system’s perspective, Neuroscience 247, 117–133.
Lakatos P., Chen C. M., O’Connell M. N., Mills A., Schroeder C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex, Neuron 53, 279–292.
Lakatos P., Karmos G., Mehta A. D., Ulbert I., Schroeder C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection, Science 320, 110–113.
Lakatos P., O’Connell M. N., Barczak A., Mills A., Javitt D. C., Schroeder C. E. (2009). The leading sense: supramodal control of neurophysiological context by attention, Neuron 64, 419–430.
Lee L. J., Chen W. J., Chuang Y. W., Wang Y. C. (2009). Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system, Exp. Neurol. 219, 524–532.
Levelt C. N., Hübener M. (2012). Critical-period plasticity in the visual cortex, Annu. Rev. Neurosci. 35, 309–330.
Li Y., Fitzpatrick D., White L. E. (2006). The development of direction selectivity in ferret visual cortex requires early visual experience, Nat. Neurosci. 9, 676–681.
Lomber S. G., Payne B. R., Cornwell P. (2001). Role of the superior colliculus in analyses of space: superficial and intermediate layer contributions to visual orienting, auditory orienting, and visuospatial discriminations during unilateral and bilateral deactivations, J. Comp. Neurol. 441, 44–57.
Lorenz K. Z. (1958). The evolution of behavior, Sci. Am. 199, 67–74 passim.
Luo L., Flanagan J. G. (2007). Development of continuous and discrete neural maps, Neuron 56, 284–300.
Maffei L., Galli-Resta L. (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life, Proc. Natl Acad. Sci. USA 87, 2861–2864.
McLaughlin T., O’Leary D. D. (2005). Molecular gradients and development of retinotopic maps, Annu. Rev. Neurosci. 28, 327–355.
Meredith M. A., Allman B. L. (2012). Early hearing-impairment results in crossmodal reorganization of ferret core auditory cortex, Neural Plast. 2012, 601591.
Meredith M. A., Clemo H. R. (1989). Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study, J. Comp. Neurol. 289, 687–707.
Meredith M. A., Lomber S. G. (2011). Somatosensory and visual crossmodal plasticity in the anterior auditory field of early-deaf cats, Hear. Res. 280, 38–47.
Meredith M. A., Stein B. E. (1990). The visuotopic component of the multisensory map in the deep laminae of the cat superior colliculus, J. Neurosci. 10, 3727–3742.
Meredith M. A., Nemitz J. W., Stein B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors, J. Neurosci. 7, 3215–3229.
Meredith M. A., Clemo H. R., Stein B. E. (1991). Somatotopic component of the multisensory map in the deep laminae of the cat superior colliculus, J. Comp. Neurol. 312, 353–370.
Metin C., Frost D. O. (1989). Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus, Proc. Natl Acad. Sci. USA 86, 357–361.
Middlebrooks J. C., Knudsen E. I. (1984). A neural code for auditory space in the cat’s superior colliculus, J. Neurosci. 4, 2621–2634.
Miller G. L., Knudsen E. I. (1999). Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl, J. Neurosci. 19, 2326–2336.
Mooney R., Penn A. A., Gallego R., Shatz C. J. (1996). Thalamic relay of spontaneous retinal activity prior to vision, Neuron 17, 863–874.
Munoz D. P., Wurtz R. H. (1995a). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells, J. Neurophysiol. 73, 2313–2333.
Munoz D. P., Wurtz R. H. (1995b). Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades, J. Neurophysiol. 73, 2334–2348.
Nakahara H., Zhang L. I., Merzenich M. M. (2004). Specialization of primary auditory cortex processing by sound exposure in the ‘critical period’, Proc. Natl Acad. Sci. USA 101, 7170–7174.
Norena A. J., Gourevitch B., Aizawa N., Eggermont J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex, Nat. Neurosci. 9, 932–939.
Ohshiro T., Angelaki D. E., DeAngelis G. C. (2011). A normalization model of multisensory integration, Nat. Neurosci. 14, 775–782.
Paperna T., Malach R. (1991). Patterns of sensory intermodality relationships in the cerebral cortex of the rat, J. Comp. Neurol. 308, 432–456.
Pasupathy A., Connor C. E. (2002). Population coding of shape in area V4, Nat. Neurosci. 5, 1332–1338.
Patton P. E., Anastasio T. J. (2003). Modeling cross-modal enhancement and modality-specific suppression in multisensory neurons, Neural Comput. 15, 783–810.
Penn A. A., Riquelme P. A., Feller M. B., Shatz C. J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity, Science 279, 2108–2112.
Quiroga R. Q., Panzeri S. (2013). Principles of Neuronal Coding. CRC Press, Boca Raton, FL, USA.
Rajan R., Irvine D. R., Wise L. Z., Heil P. (1993). Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex, J. Comp. Neurol. 338, 17–49.
Rakic P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261, 467–471.
Rakic P. (1977). Prenatal development of the visual system in rhesus monkey, Philos. Trans. R. Soc. Lond. B Biol. Sci. 278, 245–260.
Rauschecker J. P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex, Trends Neurosci. 18, 36–43.
Rolls E. T., Treves A. (2011). The neuronal encoding of information in the brain, Prog. Neurobiol. 95, 448–490.
Rowland B. A., Stein B. E. (2014). A model of the temporal dynamics of multisensory enhancement, Neurosci. Biobehav. Rev. 41, 78–84.
Rowland B. A., Stanford T., Stein B. E. (2007a). A Bayesian model unifies multisensory spatial localization with the physiological properties of the superior colliculus, Exp. Brain Res. 180, 153–161.
Rowland B. A., Stanford T. R., Stein B. E. (2007b). A model of the neural mechanisms underlying multisensory integration in the superior colliculus, Perception 36, 1431–1443.
Rowland B. A., Jiang W., Stein B. E. (2014). Brief cortical deactivation early in life has long-lasting effects on multisensory behavior, J. Neurosci. 34, 7198–7202.
Ryugo D. K., Ryugo R., Globus A., Killackey H. P. (1975). Increased spine density in auditory cortex following visual or somatic deafferentation, Brain Res. 90, 143–146.
Schnitzler A., Gross J. (2005). Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci. 6, 285–296.
Sengpiel F., Kind P. C. (2002). The role of activity in development of the visual system, Curr. Biol. 12, R818–R826.
Senkowski D., Schneider T. R., Foxe J. J., Engel A. K. (2008). Crossmodal binding through neural coherence: implications for multisensory processing, Trends Neurosci. 31, 401–409.
Serizawa S., Miyamichi K., Takeuchi H., Yamagishi Y., Suzuki M., Sakano H. (2006). A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting, Cell 127, 1057–1069.
Sharma J., Angelucci A., Sur M. (2000). Induction of visual orientation modules in auditory cortex, Nature 404, 841–847.
Shatz C. J. (1996). Emergence of order in visual system development, Proc. Natl Acad. Sci. USA 93, 602–608.
Shoykhet M., Land P. W., Simons D. J. (2005). Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons, J. Neurophysiol. 94, 3987–3995.
Sieben K., Röder B., Hanganu-Opatz I. L. (2013). Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing, J. Neurosci. 33, 5736–5749.
Sieben K., Röder B., Hanganu-Opatz I. L. (2014). Unisensory inputs control the multisensory development via directed interactions within cortico-cortical networks. Poster presentation at: Society for Neuroscience (SFN) Meeting, November 15–19, 2014, Washington, DC, USA.
Simons D. J., Land P. W. (1987). Early experience of tactile stimulation influences organization of somatic sensory cortex, Nature 326, 694–697.
Singer W. (1993). Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol. 55, 349–374.
Singer W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65, 111–125.
Singer W. (2009). Distributed processing and temporal codes in neuronal networks, Cogn. Neurodyn. 3, 189–196.
Sperry R. W. (1956). The eye and the brain, Sci. Am. 194, 48–52.
Sperry R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl Acad. Sci. USA 50, 703–710.
Stein B. E., Meredith M. A. (1993). The Merging of the Senses. MIT University Press, Cambridge, MA, USA.
Stein B. E., Labos E., Kruger L. (1973a). Sequence of changes in properties of neurons of superior colliculus of the kitten during maturation, J. Neurophysiol. 36, 667–679.
Stein B. E., Labos E., Kruger L. (1973b). Determinants of response latency in neurons of superior colliculus in kittens, J. Neurophysiol. 36, 680–689.
Stein B. E., Magalhaes-Castro B., Kruger L. (1975). Superior colliculus: visuotopic–somatotopic overlap, Science 189, 224–226.
Stein B. E., Spencer R. F., Edwards S. B. (1983). Corticotectal and corticothalamic efferent projections of SIV somatosensory cortex in cat, J. Neurophysiol. 50, 896–909.
Stein B. E., Stanford T. R., Ramachandran R., Perrault T. J. Jr, Rowland B. A. (2009). Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness, Exp. Brain Res. 198, 113–126.
Stein B. E., Burr D., Constantinidis C., Laurienti P. J., Meredith M. A., Perrault T. J. Jr, Ramachandran R., Röder B., Rowland B. A., Sathian K., Schroeder C. E., Shams L., Stanford T. R., Wallace M. T., Yu L., Lewkowicz D. J. (2010). Semantic confusion regarding the development of multisensory integration: a practical solution, Eur. J. Neurosci. 31, 1713–1720.
Stein B. E., Stanford T. R., Rowland B. A. (2014). Development of multisensory integration from the perspective of the individual neuron, Nat. Rev. Neurosci. 15, 520–535.
Stein B. E., Wallace M. W., Stanford T. R., Jiang W. (2002). Cortex governs multisensory integration in the midbrain, Neuroscientist 8, 306–314.
Stryker M. P., Harris W. A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6, 2117–2133.
Sur M., Garraghty P. E., Roe A. W. (1988). Experimentally induced visual projections into auditory thalamus and cortex, Science 242, 1437–1441.
Sur M., Pallas S. L., Roe A. W. (1990). Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex, Trends Neurosci. 13, 227–233.
Tallon-Baudry C., Bertrand O. (1999). Oscillatory gamma activity in humans and its role in object representation, Trends Cogn. Sci. 3, 151–162.
Toldi J., Farkas T., Volgyi B. (1994a). Neonatal enucleation induces cross-modal changes in the barrel cortex of rat: a behavioural and electrophysiological study, Neurosci. Lett. 167, 1–4.
Toldi J., Rojik I., Feher O. (1994b). Neonatal monocular enucleation-induced cross-modal effects observed in the cortex of adult rat, Neuroscience 62, 105–114.
Trachtenberg J. T., Stryker M. P. (2001). Rapid anatomical plasticity of horizontal connections in the developing visual cortex, J. Neurosci. 21, 3476–3482.
Trachtenberg J. T., Trepel C., Stryker M. P. (2000). Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex, Science 287, 2029–2032.
Tyll S., Budinger E., Noesselt T. (2011). Thalamic influences on multisensory integration, Commun. Integr. Biol. 4, 378–381.
Ursino M., Cuppini C., Magosso E. (2014). Neurocomputational approaches to modelling multisensory integration in the brain: A review, Neural Netw. 60, 141–165.
Van Brussel L., Gerits A., Arckens L. (2011). Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation, Cereb. Cortex 21, 2133–2146.
Vanderhaeghen P., Lu Q., Prakash N., Frisen J., Walsh C. A., Frostig R. D., Flanagan J. G. (2000). A mapping label required for normal scale of body representation in the cortex, Nat. Neurosci. 3, 358–365.
Vidyasagar T. R. (1978). Possible plasticity in rat superior colliculus, Nature 275, 140–141.
Von der Malsburg C. (1999). The what and why of binding: the modeler’s perspective, Neuron 24, 95–104, 111–125.
Von Melchner L., Pallas S. L., Sur M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway, Nature 404, 871–876.
Wagemans J., Elder J. H., Kubovy M., Palmer S. E., Peterson M. A., Singh M., Von Der Heydt R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization, Psychol. Bull. 138, 1172–1217.
Wallace W., Bear M. F. (2004). A morphological correlate of synaptic scaling in visual cortex, J. Neurosci. 24, 6928–6938.
Wallace M. T., Stein B. E. (1994). Cross-modal synthesis in the midbrain depends on input from cortex, J. Neurophysiol. 71, 429–432.
Wallace M. T., Stein B. E. (1996). Sensory organization of the superior colliculus in cat and monkey, Prog. Brain Res. 112, 301–311.
Wallace M. T., Stein B. E. (1997). Development of multisensory neurons and multisensory integration in cat superior colliculus, J. Neurosci. 17, 2429–2444.
Wallace M. T., Stein B. E. (2001). Sensory and multisensory responses in the newborn monkey superior colliculus, J. Neurosci. 21, 8886–8894.
Wallace M. T., Stein B. E. (2007). Early experience determines how the senses will interact, J. Neurophysiol. 97, 921–926.
Wallace M. T., McHaffie J. G., Stein B. E. (1997). Visual response properties and visuotopic representation in the newborn monkey superior colliculus, J. Neurophysiol. 78, 2732–2741.
Wallace M. T., Perrault T. J. Jr, Hairston W. D., Stein B. E. (2004). Visual experience is necessary for the development of multisensory integration, J. Neurosci. 24, 9580–9584.
Wang X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev. 90, 1195–1268.
Watts D. J., Strogatz S. H. (1998). Collective dynamics of ‘small-world’ networks, Nature 393, 440–442.
Wiesel T. N. (1982). Postnatal development of the visual cortex and the influence of environment, Nature 299, 583–591.
Wiesel T. N., Hubel D. H. (1963a). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body, J. Neurophysiol. 26, 978–993.
Wiesel T. N., Hubel D. H. (1963b). Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26, 1003–1017.
Withington-Wray D. J., Binns K. E., Keating M. J. (1990). The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental visual deprivation, Eur. J. Neurosci. 2, 682–692.
Wong R. O. (1999). Retinal waves and visual system development, Annu. Rev. Neurosci. 22, 29–47.
Xu J., Yu L., Rowland B. A., Stanford T. R., Stein B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration, J. Neurosci. 32, 2287–2298.
Xu J., Yu L., Rowland B. A., Stanford T. R., Stein B. E. (2014). Noise-rearing disrupts the maturation of multisensory integration, Eur. J. Neurosci. 39, 602–613.
Yamagata M., Weiner J. A., Sanes J. R. (2002). Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina, Cell 110, 649–660.
Yu L., Stein B. E., Rowland B. A. (2009). Adult plasticity in multisensory neurons: short-term experience-dependent changes in the superior colliculus, J. Neurosci. 29, 15910–15922.
Yu L., Rowland B. A., Stein B. E. (2010). Initiating the development of multisensory integration by manipulating sensory experience, J. Neurosci. 30, 4904–4913.
Yu L., Rowland B. A., Xu J., Stein B. E. (2013). Multisensory plasticity in adulthood: cross-modal experience enhances neuronal excitability and exposes silent inputs, J. Neurophysiol. 109, 464–474.
Yu L., Xu J., Rowland B. A. & Stein B. E. (in press). Multisensory plasticity in superior colliculus neurons is mediated by association cortex, Cereb. Cortex. DOI:10.1093/cercor/bhu295.
Zhang L. I., Bao S., Merzenich M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period, Proc. Natl Acad. Sci. USA 99, 2309–2314.
Zheng J. J., Li S. J., Zhang X. D., Miao W. Y., Zhang D., Yao H., Yu X. (2014). Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices, Nat. Neurosci. 17, 391–399.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 644 | 133 | 27 |
Full Text Views | 268 | 4 | 0 |
PDF Views & Downloads | 50 | 4 | 0 |
The interaction of every living organism with its environment relies on sensory abilities. Hence, sensory systems need to develop rapidly and early in life to guarantee an individual’s survival. Sensors have to emerge that are equipped with receptors that detect a variety of stimuli. These sensors have to be wired in basic interconnected networks that possess the ability to process the uni- as well as multisensory information encoded in the sensory input. Plastic changes to refine and optimize these circuits need to be effected quickly during periods of sensory experience so that uni- and multisensory systems can rapidly achieve the functional maturity needed to support the perceptual and behavioral functions reliant upon them. However, the requirement that sensory abilities mature quickly during periods of enhanced neuroplasticity is at odds with the complexity of sensory networks. Neuronal assemblies within sensory networks must be precisely wired so that processing and coding mechanisms can render relevant stimuli more salient and bind features together appropriately. Focusing on animal research, the first part of this review describes mechanisms of sensory processing that show a high degree of similarity within and between sensory systems and highlight the network complexity in relationship to the temporal and spatial precision that is needed for optimal coding and processing of sensory information. Given the resemblance of most adult intra- and intersensory coding mechanisms, it is likely that their developmental principles are similar. The second part of the review focuses on developmental aspects, summarizing the mechanisms underlying the emergence and refinement of precisely coordinated neuronal and multisensory functioning. For this purpose, we review animal research that elucidates the neural substrate of multisensory development applicable to, the less accessible, human development. Animal studies in this field have not only complemented human studies, but brought new ideas and numerous cutting edge conclusions leading to the discovery of common principles and mechanisms.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 644 | 133 | 27 |
Full Text Views | 268 | 4 | 0 |
PDF Views & Downloads | 50 | 4 | 0 |