Plasticity, and Its Limits, in Adult Human Primary Visual Cortex

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

There is an ongoing debate about whether adult human primary visual cortex (V1) is capable of large-scale cortical reorganization in response to bilateral retinal lesions. Animal models suggest that the visual neural circuitry maintains some plasticity through adulthood, and there are also a few human imaging studies in support this notion. However, the interpretation of these data has been brought into question, because there are factors besides cortical reorganization, such as the presence of sampling bias and/or the unmasking of task-dependent feedback signals from higher level visual areas, that could also explain the results. How reasonable would it be to accept that adult human V1 does not reorganize itself in the face of disease? Here, we discuss new evidence for the hypothesis that adult human V1 is not as capable of reorganization as in animals and juveniles, because in adult humans, cortical reorganization would come with costs that outweigh its benefits. These costs are likely functional and visible in recent experiments on adaptation — a rapid, short-term form of neural plasticity — where they prevent reorganization from being sustained over the long term.

Plasticity, and Its Limits, in Adult Human Primary Visual Cortex

in Multisensory Research

Sections

References

AbeH.McManusJ. N. J.RamalingamN.LiW.MarikS. A.Meyer zum Alten BorglohS.GilbertC. D. (2015). Adult cortical plasticity studied with chronically implanted electrode arraysJ. Neurosci. 3527782790.

AhissarM.HochsteinS. (2004). The reverse hierarchy theory of visual perceptual learningTrends Cogn. Sci. 8457464.

AndrewsD. P. (1964). Error-correcting perceptual mechanismsQ. J. Exp. Psychol. 16104115.

AnstisS.VerstratenF. A.MatherG. (1998). The motion aftereffectTrends Cogn. Sci. 2111117.

Anton-ErxlebenK.CarrascoM. (2013). Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidenceNat. Rev. Neurosci. 14188200.

AttneaveF. (1954). Some informational aspects of visual perceptionPsychol. Rev. 61183193.

BakerC. I.PeliE.KnoufN.KanwisherN. G. (2005). Reorganization of visual processing in macular degenerationJ. Neurosci. 25614618.

BakerC. I.DilksD. D.PeliE.KanwisherN. (2008). Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal lossVis. Res. 4819101919.

BakerM. (2013). Neuroscience: through the eyes of a mouseNature 502(7470) 156158.

BarlowH. B. (1961). The coding of sensory messages in: Current Problems in Animal BehaviourThorpeW. H.ZangwillO. L. (Eds) pp.  331360. Cambridge University PressCambridge, UK.

BarlowH. (2001). Redundancy reduction revisitedNetwork 12241253.

BarlowH. B.FöldiákP. (1989). Adaptation and decorrelation in the cortex in: The Computing NeuronDurbinR.MiallC.MitchisonG. (Eds) pp.  5472. Addison-WesleyWorkingham, UK.

BaselerH. A.GouwsA.MorlandA. B. (2009). The organization of the visual cortex in patients with scotomata resulting from lesions of the central retinaNeuro-Ophthalmology 33149157.

BaselerH. A.GouwsA.HaakK. V.RaceyC.CrosslandM. D.TufailA.RubinG. S.CornelissenF. W.MorlandA. B. (2011). Large-scale remapping of visual cortex is absent in adult humans with macular degenerationNat. Neurosci. 14649655.

BenucciA.SaleemA. B.CarandiniM. (2013). Adaptation maintains population homeostasis in primary visual cortexNat. Neurosci. 16724729.

BindaP.ThomasJ. M.BoyntonG. M.FineI. (2013). Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mappingJ. Vis. 1313. DOI:10.1167/13.7.13.

BlakemoreC.CooperG. F. (1970). Development of the brain depends on the visual environmentNature 228(5270) 477478.

BurtonH. (2003). Visual cortex activity in early and late blind peopleJ. Neurosci. 2340054011.

CalfordM. B.SchmidL. M.RosaM. G. (1999). Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortexProc. Biol. Sci. 266499507.

CalfordM. B.WangC.TaglianettiV.WaleszczykW. J.BurkeW.DreherB. (2000). Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layersJ. Physiol. 524(2) 587602.

ChinoY. M.KaasJ. H.SmithE. L.3rdLangstonA. L.ChengH. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retinaVis. Res. 32789796.

ChinoY. M.SmithE. L.3rdKaasJ. H.SasakiY.ChengH. (1995). Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult catsJ. Neurosci. 1524172433.

CliffordC. W.WebsterM. A.StanleyG. B.StockerA. A.KohnA.SharpeeT. O.SchwartzO. (2007). Visual adaptation: neural, psychological and computational aspectsVis. Res. 4731253131.

CornelissenF. W.WadeA. R.VladusichT.DoughertyR. F.WandellB. A. (2006). No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortexJ. Neurosci. 2636343641.

Darian-SmithC.GilbertC. D. (1994). Axonal sprouting accompanies functional reorganization in adult cat striate cortexNature 368(6473) 737740.

Darian-SmithC.GilbertC. D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediatedJ. Neurosci. 1516311647.

De WeerdP.GattassR.DesimoneR.UngerleiderL. G. (1995). Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotomaNature 377(6551) 731734.

DhruvN. T.CarandiniM. (2014). Cascaded effects of spatial adaptation in the early visual systemNeuron 81529535.

DilksD. D.BakerC. I.PeliE.KanwisherN. (2009). Reorganization of visual processing in macular degeneration is not specific to the “preferred retinal locus”J. Neurosci. 2927682773.

DilksD. D.JulianJ. B.PeliE.KanwisherN. (2014). Reorganization of visual processing in age-related macular degeneration depends on foveal lossOptom. Vis. Sci. 91e199e206.

DragoiV.SharmaJ.SurM. (2000). Adaptation-induced plasticity of orientation tuning in adult visual cortexNeuron 28287298.

GilbertC. D.WieselT. N. (1992). Receptive field dynamics in adult primary visual cortexNature 356(6365) 150152.

GrahamN. V. S. (1989). Visual Pattern Analyzers. Oxford University PressNew York, NY, USA.

HaakK. V.CornelissenF. W.MorlandA. B. (2012). Population receptive field dynamics in human visual cortexPLoS ONE 7e37686. DOI:10.1371/journal.pone.0037686.

HaakK. V.FastE.BaekY.MesikJ. (2014a). Equalization and decorrelation in primary visual cortexJ. Neurophysiol. 112501503.

HaakK. V.LangersD. R.RenkenR.van DijkP.BorgsteinJ.CornelissenF. W. (2014b). Abnormal visual field maps in human cortex: a mini-review and a case reportCortex 561425.

HaakK. V.FastE.BaoM.LeeM.EngelS. A. (2014c). Four days of visual contrast deprivation reveals limits of neuronal adaptationCurr. Biol. 2425752579.

HirschH. V.SpinelliD. N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in catsScience 168869871.

HochsteinS.AhissarM. (2002). View from the top: hierarchies and reverse hierarchies in the visual systemNeuron 36791804.

HubermanA. D.NiellC. M. (2011). What can mice tell us about how vision works? Trends Neurosci. 34464473.

KaasJ. H.KrubitzerL. A.ChinoY. M.LangstonA. L.PolleyE. H.BlairN. (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retinaScience 248229231.

KeckT.Mrsic-FlogelT. D.Vaz AfonsoM.EyselU. T.BonhoefferT.HubenerM. (2008). Massive restructuring of neuronal circuits during functional reorganization of adult visual cortexNat. Neurosci. 1111621167.

KohnA. (2007). Visual adaptation: physiology, mechanisms, and functional benefitsJ. Neurophysiol. 9731553164.

KomatsuH. (2006). The neural mechanisms of perceptual filling-inNat. Rev. Neurosci. 7220231.

MaffeiL.FiorentiniA.BistiS. (1973). Neural correlate of perceptual adaptation to gratingsScience 18210361038.

MasudaY.DumoulinS. O.NakadomariS.WandellB. A. (2008). V1 projection zone signals in human macular degeneration depend on task, not stimulusCereb. Cortex 1824832493.

MasudaY.HoriguchiH.DumoulinS. O.FurutaA.MiyauchiS.NakadomariS.WandellB. A. (2010). Task-dependent V1 responses in human retinitis pigmentosaInvest. Ophthalmol. Vis. Sci. 5153565364.

MovshonJ. A.LennieP. (1979). Pattern-selective adaptation in visual cortical neuronesNature 278(5707) 850852.

MuckliL.NaumerM. J.SingerW. (2009). Bilateral visual field maps in a patient with only one hemisphereProc. Natl Acad. Sci. USA 1061303413039.

MurakamiI.KomatsuH.KinoshitaM. (1997). Perceptual filling-in at the scotoma following a monocular retinal lesion in the monkeyVis. Neurosci. 1489101.

OhlF. W.ScheichH. (2005). Learning-induced plasticity in animal and human auditory cortexCurr. Opin. Neurobiol. 15470477.

OhzawaI.SclarG.FreemanR. D. (1985). Contrast gain control in the cat’s visual systemJ. Neurophysiol. 54651667.

PattersonC. A.WissigS. C.KohnA. (2014). Adaptation disrupts motion integration in the primate dorsal streamNeuron 81674686.

PettetM. W.GilbertC. D. (1992). Dynamic changes in receptive-field size in cat primary visual cortexProc. Natl Acad. Sci. USA 8983668370.

PolleyD. B.SteinbergE. E.MerzenichM. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influencesJ. Neurosci. 2649704982.

RamachandranV. S.GregoryR. L. (1991). Perceptual filling in of artificially induced scotomas in human visionNature 350(6320) 699702.

RobertsonD.IrvineD. R. (1989). Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafnessJ. Comp. Neurol. 282456471.

SchmidL. M.RosaM. G.CalfordM. B. (1995). Retinal detachment induces massive immediate reorganization in visual cortexNeuroReport 613491353.

SchumacherE. H.JackoJ. A.PrimoS. A.MainK. L.MoloneyK. P.KinzelE. N.GinnJ. (2008). Reorganization of visual processing is related to eccentric viewing in patients with macular degenerationRestor. Neurol. Neurosci. 26391402.

SchwartzO.HsuA.DayanP. (2007). Space and time in visual contextNat. Rev. Neurosci. 8522535.

SeriesP.StockerA. A.SimoncelliE. P. (2009). Is the homunculus “aware” of sensory adaptation? Neural Comput. 2132713304.

SmirnakisS. M.BrewerA. A.SchmidM. C.ToliasA. S.SchuzA.AugathM.InhoffenW.WandellB. A.LogothetisN. K. (2005). Lack of long-term cortical reorganization after macaque retinal lesionsNature 435(7040) 300307.

SunnessJ. S.LiuT.YantisS. (2004). Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degenerationOphthalmology 11115951598.

UllmanS.SchechtmanG. (1982). Adaptation and gain normalizationProc. R. Soc. Lond. B Biol. Sci. 216299313.

WainwrightM. J. (1999). Visual adaptation as optimal information transmissionVis. Res. 3939603974.

WandellB. A.SmirnakisS. M. (2009). Plasticity and stability of visual field maps in adult primary visual cortexNat. Rev. Neurosci. 10873884.

WangQ.BurkhalterA. (2007). Area map of mouse visual cortexJ. Comp. Neurol. 502339357.

WeilR. S.ReesG. (2011). A new taxonomy for perceptual filling-inBrain Res. Rev. 674055.

WerthR. (2006). Visual functions without the occipital lobe or after cerebral hemispherectomy in infancyEur. J. Neurosci. 2429322944.

ZurD.UllmanS. (2003). Filling-in of retinal scotomasVis. Res. 43971982.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 7
Full Text Views 64 64 42
PDF Downloads 6 6 3
EPUB Downloads 0 0 0