Bernhard Sabel and ‘Residual Vision Activation Theory’: a History Spanning Three Decades

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


This review has the purpose of retracing the work of Professor Bernard Sabel and his group over the last 2–3 decades, in order to understand how they achieved formulation of the ‘Residual Vision Activation Theory’. The methodology proposed is described, from the first studies in 1995 with High Resolution Perimetry requiring a six-months training period, to the new technologies, such as repetitive transorbital Alternating Current Stimulation, that require ten days of training. Vision restoration therapy has shown improvement in visual responses irrespective of age at the training, lesion aetiology and site of lesion. The hypothesis that visual training may induce network plasticity, improving neuronal networks in cortical and subcortical areas of both hemispheres, appears to be confirmed by recent studies including observation of the cerebral activity by fMRI and EEG. However, the results are quite variable and the mechanisms that influence cerebral activity are still unclear. The residual vision activation theory has been much criticized, both for its methodology and analysis of the results, but it gave a new impulse to the research in this area, stimulating more studies on induced cerebral plasticity.

Bernhard Sabel and ‘Residual Vision Activation Theory’: a History Spanning Three Decades

in Multisensory Research



AldermanN.FryR. K.YoungsonH. A. (1995). Improvement of self-monitoring skills, reduction of behavior disturbance and dysexecutive syndrome: comparison of response cost and a new program of self-monitoring trainingNeuropsychol. Rehabil. 5193221.

BarburJ. L.WatsonJ. D.FrackowiakR. S.ZekiS. (1993). Conscious visual perception without V1Brain 11612931302.

BienA.SeidenbecherC. I.BöckersT. M.SabelB. A.KreutzM. R. (1999). Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injuryJ. Neurotrauma 16153163.

BolaM.GallC.SabelB. A. (2013a). ‘Sightblind’: perceptual deficits in the ‘intact’ visual fieldFront. Neurol. 480. DOI:10.3389/fneur.2013.00080.

BolaM.GallC.SabelB. A. (2013b). The second face of blindness: processing speed deficits in the intact visual field after pre- and post-chiasmatic lesionsPLoS ONE 8e63700. DOI:10.1371/journal.pone.0063700.

BrindleyP.CopelandM.DemainC.MartynP. (1989). A comparison of the speech of ten chronic Broca’s aphasics following intensive and non-intensive periods of therapyAphasiology 3695707.

BurkeW. H.ZenciusA. H.WesolowskiM. D.DoubledayF. (1991). Improving executive function disorders in brain-injured clientsBrain Inj. 5241252.

CohenL. G.CelnikP.Pascual-LeoneA.CorwellB.FalzL.DambrosiaJ.HondaM.SadatoN.GerloffC.CataláM. D.HallettM. (1997). Functional relevance of cross-modal plasticity in blind humansNature 11180183.

DillerL.RileyE. (1993). The behavioral management of neglect in: Unilateral Neglect: Clinical and Experimental StudiesRobertsonI. H.MarshallJ. C. (Eds) pp.  293310. Lawrence Erlbaum AssociatesHillsdale, NJ, USA.

FedorovA.JobkeS.BersnevV.ChibisovaA.ChibisovaY.GallC.SabelB. A. (2011). Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational studyBrain Stimul. 4189201.

GallC.MüllerI.KaufmannC.SabelB. A. (2006). Effects of long-term use of Vision Restoration Therapy (VRT) and stability of visual field improvements >3 years in: 67th AAPM&R Annual Assembly Nov. 9–12 Honolulu HI USA.

GallC.MuellerI.GudlinJ.LindigA.SchlueterD.JobkeS.FrankeG. H.SabelB. A. (2008a). Vision- and health-related quality of life before and after vision restoration training in cerebrally damaged patientsRestor. Neurol. Neurosci. 26341353.

GallC.MuellerI.KaufmannC.FrankeG. H.SabelB. A. (2008b). Visual field defects after cerebral lesions from the patient’s perspective: health- and vision-related quality of life assesseb by SF-36 and NEI-VFQNervenarzt 79185194.

GallC.LucklumJ.SabelB. A.FrankeG. H. (2009). Vision- and health-related quality of life in patients with visual field loss after postchiasmatic lesionsInvest. Ophthalmol. Vis. Sci. 5027652776.

GallC.FrankeG. H.SabelB. A. (2010). Vision-related quality of life in first stroke patients with homonymous visual field defectsHealth Qual. Life Outcomes 833. DOI:10.1186/1477-7525-8-33.

GallC.SgorzalyS.SchmidtS.BrandtS.FedorovA.SabelB. A. (2011). Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathyBrain Stimul. 4175188.

GallC.AntalA.SabelB. A. (2013). Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damageGraefes Arch. Clin. Exp. Ophthalmol. 25110411043.

GlissonC. C.GalettaS. L. (2007). Visual rehabilitation: now you see it; now you don’tNeurology 6818811882.

GotheJ.BrandtS. A.IrlbacherK.RörichtS.SabelB. A.MeyerB. U. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulationBrain 125479490.

GudlinJ.MuellerI.ThanosS.SabelB. A. (2008). Computer based vision restoration therapy in glaucoma patients: a small open pilot studyRestor. Neurol. Neurosci. 26403412.

HortonJ. C. (2005a). Disappointing results from Nova Vision’s restitution therapyBr. J. Ophthalmol. 8912.

HortonJ. C. (2005b). Vision restoration therapy: confounded by eye movementsBr. J. Ophthalmol. 89792794.

JobkeS.KastenE.SabelB. A. (2009). Vision restoration through extrastriate stimulation in patients with visual field defects: a double-blind and randomized experimental studyNeurorehabil. Neural Repair 23246255.

KastenE.SabelB. A. (1995). Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: an open pilot trialRestor. Neurol. Neurosci. 8113127.

KastenE.StrasburgerH.SabelB. A. (1997). Programs for diagnosis and therapy of visual field deficits in vision rehabilitationSpat. Vis. 10499503.

KastenE.WuestS.SabelB. A. (1998a). Residual vision in transition zones in patients with cerebral blindnessJ. Clin. Exp. Neuropsychol. 20581598.

KastenE.WüstS.Behrens-BaumannW.SabelB. A. (1998b). Computer-based training for the treatment of partial blindnessNat. Med. 410831087.

KastenE.PoggelD. A.SabelB. A. (2000). Computer-based training of stimulus detection improves color and simple pattern recognition in the defective field of hemianopic subjectsJ. Cogn. Neurosci. 1210011012.

KastenE.Müller-OehringE.SabelB. A. (2001). Stability of visual field enlargements following computer-based restitution training — results of a follow-upJ. Clin. Exp. Neuropsychol. 23297305.

KastenE.BunzenthalU.SabelB. A. (2006). Visual field recovery after vision restoration therapy (VRT) in independent of eye movements: an eye tracker studyBehav. Brain Res. 1751826.

KerkhoffG.MünßingerU.HaafE.Eberle-StraussG.StögererE. (1992). Rehabilitation of homonymous scotoma in patients with postgeniculate damage of the visual system: saccadic compensation trainingRestor. Neurol. Neurosci. 4245254.

KerkhoffG.MünßingerU.MeierE. K. (1994). Neurovisual rehabilitation in cerebral blindnessArch. Neurol. 51474481.

KreutzM. R.SeidenbecherC. I.SabelB. A. (1999). Molecular plasticity of retinal ganglion cells after partial optic nerve injuryRestor. Neurol. Neurosci. 14127134.

MarshallR. S.FerreraJ. J.BarnesA.ZhangX.O’BrienK. A.ChmayssaniM.HirschJ.LazarR. M. (2008). Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patientsNeurorehabil. Neural Repair 22136144.

McFadzeanR. M. (2006). NovaVision: vision restoration therapyCurr. Opin. Ophthalmol. 17498503.

MeyerB. U.DiehlR.SteinmetzH.BrittonT. C.BeneckeR. (1991). Magnetic stimuli applied over motor cortex and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movementsElectroencephalogr. Clin. Neurophysiol. Suppl. 43121134.

MuellerI.MastH.SabelB. A. (2007). Recovery of visual field defects: a large clinical observational study using vision restoration therapyRestor. Neurol. Neurosci. 25563572.

PambakianA. L.WoodingD. S.PatelN.MorlandA. B.KennardC.MannanS. K. (2000). Scanning the visual world: a study of patients with homonymous hemianopiaJ. Neurol. Neurosurg. Psychiatry 69751759.

PlantG. T. (2005). A work out hemianopiaBr. J. Ophthalmol. 892.

PoggelD. A.MuellerI.KastenE.SabelB. A. (2008). Multifactorial predictors and outcome variables of vision restoration training in patients with post-geniculate visual field lossRest. Neurol. Neuruosci. 26321339.

PommerenkeK.MarkowitschH. J. (1989). Rehabilitation training of homonymous visual field defects in patients with postgeniculate damage of the visual systemRestor. Neurol. Neurosci. 14763.

PougetM. C.Lévy-BenchetonD.ProstM.TiliketeC.HusainM.Jacquin-CourtoisS. (2012). Acquired visual field defects rehabilitation: critical review and perspectivesAnn. Phys. Rehabil. Med. 555374.

PrilloffS.NoblejasM. I.ChedhommeV.SabelB. A. (2007). Two faces of calcium activation after optic nerve trauma: live or death of retinal ganglion cells in vivo dependes on calcium dynamicsEur. J. Neurosci. 2533393346.

ReinhardJ.SchreiberA.SchieferU.KastenE.SabelB. A.KenkelS.VontheinR.Trauzettel-KlosinskiS. (2005). Does visual restitution training change absolute homonymous visual field defects? A fundus controlled studyBr. J. Ophthalmol. 893035.

SabelB. A. (1997). Unrecognized potential of surviving neurons: within-systems plasticity, recovery of function, and the hypothesis of minimal residual structureNeuroscientist 3366370.

SabelB. A.AschoffA. (1993). Functional recovery and morphological changes after injury to the optic nerveNeuropsychobiology 286265.

SabelB. A.GudlinJ. (2014). Vision restoration training for glaucoma: a randomized clinical trialJAMA Ophthalmol. 132381389.

SabelB. A.KastenE.KreutzM. R. (1997). Recovery of vision after partial visual system injury as a model of postlesion neuroplasticityAdv. Neurol. 73251276.

SabelB. A.Henrich-NoackP.FedorovA.GallC. (2011a). Vision restoration after brain and retina damage: the ‘residual vision activation theory’Prog. Brain Res. 192199262.

SabelB. A.FedorovA. B.NaueN.BorrmannA.HerrmannC.GallC. (2011b). Non-invasive alternating current stimulation improves vision in optic neuropathyRestor. Neurol. Neurosci. 29493505.

SabelB. A.KruseR.GuentherT. (2013). Local topographic influences on vision restoration hot spots after brain damageRestor. Neurol. Neurosci. 3187803.

SchoenfeldM. A.HeinzeH. J.WoldorffM. G. (2002a). Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortexNeuroImage 17769779.

SchoenfeldM. A.NoesseltT.PoggelD.TempelmannC.HopfJ.-M.WoldorffM. G.HeinzeH.-J.HillyardS. A. (2002b). Analysis of pathways mediating preserved vision after striate cortex lesionsAnn. Neurol. 52814824.

SchwartzM. S. (1995). Adults with traumatic brain injury: three case studies of cognitive rehabilitation in home settingAm. J. Occup. Ther. 49655667.

ZekiS.FfytcheD. H. (1998). The Riddoch syndrome: insights into the neurobiology of conscious visionBrain 1212545.

ZihlJ. (1980). Untersuchung von Sehfunktionen bei Patientenmiteiner Schädigung der zentralenvisuellen Systems unter besonderer Berücksichtigung der Restitution dieser Funktionen Habilitationsschrift München Germany.


  • View in gallery

    Visual field size and training area. The first column shows the result of the perimetry, left and right eye were tested separately. Each circle represents the visual field of each eye up to 60° eccentricity, black indicates blind areas, shaded parts represent fields of inadequate vision and white sections represent intact areas. The second column displays the four possible monitor positions in relation to the visual field squares. The circle shows the binocular visual field, the small grey square is the area that was trained. The last column shows the result of the PERIMAT program in the trained area before and after training. Modified from Kasten and Sabel (1995).

  • View in gallery

    Determination of the transition zone: superimposed data from 5 PeriMa tests. Black squares = stimulus positions with no response; grey squares = 1–4 responses; white squares = 5 responses. Modified from Kasten et al. (1998a).


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 29 29 16
Full Text Views 95 95 82
PDF Downloads 3 3 1
EPUB Downloads 0 0 0