A Potential Role of Auditory Induced Modulations in Primary Visual Cortex

In: Multisensory Research
View More View Less
  • 1 Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
  • 2 IMPRS for Cognitive and Systems Neuroscience, Universität Tübingen, 72074 Tübingen, Germany
  • 3 Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
  • 4 Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

A biologically relevant event is normally the source of multiple, typically correlated, sensory inputs. To optimize perception of the outer world, our brain combines the independent sensory measurements into a coherent estimate. However, if sensory information is not readily available for every pertinent sense, the brain tries to acquire additional information via covert/overt orienting behaviors or uses internal knowledge to modulate sensory sensitivity based on prior expectations. Cross-modal functional modulation of low-level auditory areas due to visual input has been often described; however, less is known about auditory modulations of primary visual cortex. Here, based on some recent evidence, we propose that an unexpected auditory signal could trigger a reflexive overt orienting response towards its source and concomitantly increase the primary visual cortex sensitivity at the locations where the object is expected to enter the visual field. To this end, we propose that three major functionally specific pathways are employed in parallel. A stream orchestrated by the superior colliculus is responsible for the overt orienting behavior, while direct and indirect (via higher-level areas) projections from A1 to V1 respectively enhance spatiotemporal sensitivity and facilitate object detectability.

  • Adams D. L., Horton J. C. (2003). A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas, J. Neurosci. 23, 37713789.

    • Search Google Scholar
    • Export Citation
  • Baizer J. S., Lock T. M., Youakim M. (1997). Projections from the claustrum to the prelunate gyrus in the monkey, Exp. Brain Res. 113, 564568.

    • Search Google Scholar
    • Export Citation
  • Barone P., Batardiere A., Knoblauch K., Kennedy H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule, J. Neurosci. 20, 32633281.

    • Search Google Scholar
    • Export Citation
  • Benevento L. A., Rezak M. (1976). The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study, Brain Res. 108, 124.

    • Search Google Scholar
    • Export Citation
  • Blank H., Anwander A., von Kriegstein K. (2011). Direct structural connections between voice- and face-recognition areas, J. Neurosci. 31, 1290612915.

    • Search Google Scholar
    • Export Citation
  • Bolognini N., Senna I., Maravita A., Pascual-Leone A., Merabet L. B. (2010). Auditory enhancement of visual phosphene perception: the effect of temporal and spatial factors and of stimulus intensity, Neurosci. Lett. 477, 109114.

    • Search Google Scholar
    • Export Citation
  • Callaway E. M. (1998). Local circuits in primary visual cortex of the macaque monkey, Annu. Rev. Neurosci. 21, 4774.

  • Calvert G. A. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies, Cereb. Cortex 11, 11101123.

    • Search Google Scholar
    • Export Citation
  • Calvert G. A., Brammer M. J., Bullmore E. T., Campbell R., Iversen S. D., David A. S. (1999). Response amplification in sensory-specific cortices during crossmodal binding, NeuroReport 10, 26192623.

    • Search Google Scholar
    • Export Citation
  • Carlisle N. B., Arita J. T., Pardo D., Woodman G. F. (2011). Attentional templates in visual working memory, J. Neurosci. 31, 93159322.

  • Chennu S., Noreika V., Gueorguiev D., Blenkmann A., Kochen S., Ibáñez A., Owen A. M., Bekinschtein T. A. (2013). Expectation and attention in hierarchical auditory prediction, J. Neurosci. 33, 1119411205.

    • Search Google Scholar
    • Export Citation
  • Chklovskii D. B., Koulakov A. A. (2004). Maps in the brain: what can we learn from them? Annu. Rev. Neurosci. 27, 369392.

  • Clavagnier S., Falchier A., Kennedy H. (2004). Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness, Cogn. Affect. Behav. Neurosci. 4, 117126.

    • Search Google Scholar
    • Export Citation
  • Corneil B. D., Munoz D. P. (2014). Overt responses during covert orienting, Neuron 82, 12301243.

  • Ernst M. O., Banks M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415(6870), 429433.

    • Search Google Scholar
    • Export Citation
  • Falchier A., Clavagnier S., Barone P., Kennedy H. (2002). Anatomical evidence of multimodal integration in primate striate cortex, J. Neurosci. 22, 57495759.

    • Search Google Scholar
    • Export Citation
  • Felleman D. J., Van Essen D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1, 147.

  • Fetsch C. R., DeAngelis G. C., Angelaki D. E. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons, Nat. Rev. Neurosci. 14, 429442.

    • Search Google Scholar
    • Export Citation
  • Freese J. L., Amaral D. G. (2005). The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey, J. Comp. Neurol. 486, 295317.

    • Search Google Scholar
    • Export Citation
  • Friston K. (2005). A theory of cortical responses, Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1456), 815836.

  • Ghazanfar A. A., Schroeder C. E. (2006). Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278285.

  • Ghazanfar A. A., Maier J. X., Hoffman K. L., Logothetis N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex, J. Neurosci. 25, 50045012.

    • Search Google Scholar
    • Export Citation
  • Ghazanfar A. A., Chandrasekaran C., Logothetis N. K. (2008). Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys, J. Neurosci. 28, 44574469.

    • Search Google Scholar
    • Export Citation
  • Henson D. B. (1993). Visual Fields, 1st edn. Oxford Medical Publications, Oxford, UK.

  • Hubel D. H., Wiesel T. N. (1968). Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195, 215243.

  • Issa N. P., Trepel C., Stryker M. P. (2000). Spatial frequency maps in cat visual cortex, J. Neurosci. 20, 85048514.

  • Jay M. F., Sparks D. L. (1984). Auditory receptive fields in primate superior colliculus shift with changes in eye position, Nature 309(5966), 345347.

    • Search Google Scholar
    • Export Citation
  • Kaas J. H., Hackett T. A. (2000). Subdivisions of auditory cortex and processing streams in primates, Proc. Natl Acad. Sci. USA 97, 1179311799.

    • Search Google Scholar
    • Export Citation
  • Kanwisher N. (2010). Functional specificity in the human brain: a window into the functional architecture of the mind, Proc. Natl Acad. Sci. USA 107, 1116311170.

    • Search Google Scholar
    • Export Citation
  • Kara P., Boyd J. D. (2009). A micro-architecture for binocular disparity and ocular dominance in visual cortex, Nature 458(7238), 627631.

    • Search Google Scholar
    • Export Citation
  • Kayser C., Petkov C. I., Augath M., Logothetis N. K. (2007). Functional imaging reveals visual modulation of specific fields in auditory cortex, J. Neurosci. 27, 18241835.

    • Search Google Scholar
    • Export Citation
  • Kayser C., Petkov C. I., Logothetis N. K. (2008). Visual modulation of neurons in auditory cortex, Cereb. Cortex 18, 15601574.

  • Klier E. M., Wang H., Crawford J. D. (2003). Three-dimensional eye-head coordination is implemented downstream from the superior colliculus, J. Neurophysiol. 89, 28392853.

    • Search Google Scholar
    • Export Citation
  • Knill D. C., Pouget A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation, Trends Neurosci. 27, 712719.

    • Search Google Scholar
    • Export Citation
  • Kok P., Jehee J. F. M., De Lange F. P. (2012). Less is more: expectation sharpens representations in the primary visual cortex, Neuron 75, 265270.

    • Search Google Scholar
    • Export Citation
  • Kok P., Brouwer G. J., Van Gerven M. A., De Lange F. P. (2013). Prior expectations bias sensory representations in visual cortex, J. Neurosci. 33, 1627516284.

    • Search Google Scholar
    • Export Citation
  • Kok P., Failing M. F., De Lange F. P. (2014). Prior expectations evoke stimulus templates in the primary visual cortex, J. Cogn. Neurosci. 26, 15461554.

    • Search Google Scholar
    • Export Citation
  • Krauzlis R. J., Liston D., Carello C. D. (2004). Target selection and the superior colliculus: goals, choices and hypotheses, Vis. Res. 44, 14451451.

    • Search Google Scholar
    • Export Citation
  • Kustov A. A., Robinson D. L. (1996). Shared neural control of attentional shifts and eye movements, Nature 384(6604), 7477.

  • Lakatos P., Chen C. M., O’Connell M. N., Mills A., Schroeder C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex, Neuron 53, 279292.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., Karmos G., Mehta A. D., Ulbert I., Schroeder C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection, Science 320(5872), 110113.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., O’Connell M. N., Barczak A., Mills A., Javitt D. C., Schroeder C. E. (2009). The leading sense: supramodal control of neurophysiological context by attention, Neuron 64, 419430.

    • Search Google Scholar
    • Export Citation
  • Landisman C. E., Ts’o D. Y. (2002). Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation, J. Neurophysiol. 87, 31263137.

    • Search Google Scholar
    • Export Citation
  • Lee J., Groh J. M. (2012). Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus, J. Neurophysiol. 108, 227242.

    • Search Google Scholar
    • Export Citation
  • Leung J., Alais D., Carlile S. (2008). Compression of auditory space during rapid head turns, Proc. Natl Acad. Sci. USA 105, 64926497.

  • Lu H. D., Roe A. W. (2008). Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging, Cereb. Cortex 18, 516533.

    • Search Google Scholar
    • Export Citation
  • Lupyan G., Ward E. J. (2013). Language can boost otherwise unseen objects into visual awareness, Proc. Natl Acad. Sci. USA 110, 1419614201.

    • Search Google Scholar
    • Export Citation
  • Macaluso E., Driver J. (2005). Multisensory spatial interactions: a window onto functional integration in the human brain, Trends Neurosci. 28, 264271.

    • Search Google Scholar
    • Export Citation
  • McDonald J. J., Teder-Sälejärvi W. A., Hillyard S. A. (2000). Involuntary orienting to sound improves visual perception, Nature 407(6806), 906908.

    • Search Google Scholar
    • Export Citation
  • McManus J. N. J., Li W., Gilbert C. D. (2011). Adaptive shape processing in primary visual cortex, Proc. Natl Acad. Sci. USA 108, 97399746.

    • Search Google Scholar
    • Export Citation
  • McPeek R. M., Keller E. L. (2004). Deficits in saccade target selection after inactivation of superior colliculus, Nat. Neurosci. 7, 757763.

    • Search Google Scholar
    • Export Citation
  • Meredith M. A., Stein B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration, J. Neurophysiol. 56, 640662.

    • Search Google Scholar
    • Export Citation
  • Meredith M. A., Clemo H. R., Stein B. E. (1991). Somatotopic component of the multisensory map in the deep laminae of the cat superior colliculus, J. Comp. Neurol. 312, 353370.

    • Search Google Scholar
    • Export Citation
  • Middlebrooks J. C., Knudsen E. I. (1984). A neural code for auditory space in the cat’s superior colliculus, J. Neurosci. 4, 26212634.

    • Search Google Scholar
    • Export Citation
  • Morrell F. (1972). Visual system’s view of acoustic space, Nature 238(5358), 4446.

  • Ohki K., Chung S., Ch’ng Y. H., Kara P., Reid R. C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex, Nature 433(7026), 597603.

    • Search Google Scholar
    • Export Citation
  • Oliver D. L., Beckius G. E., Bishop D. C., Loftus W. C., Batra R. (2003). Topography of interaural temporal disparity coding in projections of medial superior olive to inferior colliculus, J. Neurosci. 23, 74387449.

    • Search Google Scholar
    • Export Citation
  • Posner M. I., Nissen M. J., Ogden W. C. (1978). Attended and unattended processing modes: the role of set for spatial location, in: Modes of Perceiving and Processing Information, Pick H., Saltzmann E. (Eds), pp.  137157. John Wiley and Sons Inc., Hillsdale, NJ, USA.

    • Search Google Scholar
    • Export Citation
  • Rao R. P., Ballard D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects, Nat. Neurosci. 2, 7987.

    • Search Google Scholar
    • Export Citation
  • Reser D. H. (2000). Binaural interactions in primary auditory cortex of the awake macaque, Cereb. Cortex 10, 574584.

  • Rockland K. S., Ojima H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey, Int. J. Psychophysiol. 50, 1926.

    • Search Google Scholar
    • Export Citation
  • Rolke B., Hofmann P. (2007). Temporal uncertainty degrades perceptual processing, Psychonom. Bull. Rev. 14, 522526.

  • Romei V., Murray M. M., Merabet L. B., Thut G. (2007). Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions, J. Neurosci. 27, 1146511472.

    • Search Google Scholar
    • Export Citation
  • Romei V., Murray M. M., Cappe C., Thut G. (2009). Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds, Curr. Biol. 19, 17991805.

    • Search Google Scholar
    • Export Citation
  • Romei V., Gross J., Thut G. (2012). Sounds reset rhythms of visual cortex and corresponding human visual perception, Curr. Biol. 22, 807813.

    • Search Google Scholar
    • Export Citation
  • Saenz M., Langers D. R. M. (2014). Tonotopic mapping of human auditory cortex, Hearing Res. 307, 4252.

  • Schroeder C. E., Foxe J. (2005). Multisensory contributions to low-level, ‘unisensory’ processing, Curr. Opin. Neurobiol. 15, 454458.

    • Search Google Scholar
    • Export Citation
  • Schwarz D. A., Lebedev M. A., Hanson T. L., Dimitrov D. F., Lehew G., Meloy J., Rajangam S., Subramanian V., Ifft P. J., Li Z., Ramakrishnan A., Tate A., Zhuang K. Z., Nicolelis M. A. (2014). Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys, Nat. Meth. 11, 670676.

    • Search Google Scholar
    • Export Citation
  • Shams L., Kim R. (2010). Crossmodal influences on visual perception, Phys. Life Rev. 7, 269284.

  • Shams L., Kamitani Y., Shimojo S. (2000). Illusions. What you see is what you hear, Nature 408(6814), 788.

  • Sharma J., Sugihara H., Katz Y., Schummers J., Tenenbaum J., Sur M. (in press). Spatial attention and temporal expectation under timed uncertainty predictably modulate neuronal responses in monkey V1, Cereb. Cortex.

    • Search Google Scholar
    • Export Citation
  • Sparks D. L. (1999). Conceptual issues related to the role of the superior colliculus in the control of gaze, Curr. Opin. Neurobiol. 9, 698707.

    • Search Google Scholar
    • Export Citation
  • Sprague J. M. (1996). Neural mechanisms of visual orienting responses, Prog. Brain Res. 112, 115.

  • Stein B. E., Meredith M. A. (1993). The Merging of the Senses. MIT Press, Cambridge, MA, USA.

  • Stein B. E., Meredith M. A., Wallace M. T. (1993). The visually responsive neuron and beyond: multisensory integration in cat and monkey, Prog. Brain Res. 95, 7990.

    • Search Google Scholar
    • Export Citation
  • Stein B. E., Stanford T. R., Rowland B. A. (2009). The neural basis of multisensory integration in the midbrain: its organization and maturation, Hearing Res. 258, 415.

    • Search Google Scholar
    • Export Citation
  • Stein B. E., Stanford T. R., Rowland B. A. (2014). Development of multisensory integration from the perspective of the individual neuron, Nat. Rev. Neurosci. 15, 520535.

    • Search Google Scholar
    • Export Citation
  • Summerfield C., Egner T. (2009). Expectation (and attention) in visual cognition, Trends Cogn. Sci. 13, 403409.

  • Talsma D., Senkowski D., Soto-Faraco S., Woldorff M. G. (2010). The multifaceted interplay between attention and multisensory integration, Trends Cogn. Sci. 14, 400410.

    • Search Google Scholar
    • Export Citation
  • Van der Burg E., Talsma D., Olivers C. N., Hickey C., Theeuwes J. (2011). Early multisensory interactions affect the competition among multiple visual objects, NeuroImage 55, 12081218.

    • Search Google Scholar
    • Export Citation
  • Vanduffel W., Zhu Q., Orban G. A. (2014). Monkey cortex through fMRI glasses, Neuron 83, 533550.

  • Vaney D. I., Sivyer B., Taylor W. R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function, Nat. Rev. Neurosci. 13, 194208.

    • Search Google Scholar
    • Export Citation
  • Vroomen J., De Gelder B. (2000). Sound enhances visual perception: cross-modal effects of auditory organization on vision, J. Exp. Psychol. Hum. Percept. Perform. 26, 15831590.

    • Search Google Scholar
    • Export Citation
  • Wang Y., Celebrini S., Trotter Y., Barone P. (2008). Visuo-auditory interactions in the primary visual cortex of the behaving monkey: electrophysiological evidence, BMC Neurosci. 9, 79.

    • Search Google Scholar
    • Export Citation
  • Watkins S., Shams L., Tanaka S., Haynes J. D., Rees G. (2006). Sound alters activity in human V1 in association with illusory visual perception, NeuroImage 31, 12471256.

    • Search Google Scholar
    • Export Citation
  • Watkins S., Shams L., Josephs O., Rees G. (2007). Activity in human V1 follows multisensory perception, NeuroImage 37, 572578.

  • Wei T., Liang X., He Y., Zang Y., Han Z., Caramazza A., Bi Y. (2012). Predicting conceptual processing capacity from spontaneous neuronal activity of the left middle temporal gyrus, J. Neurosci. 32, 481489.

    • Search Google Scholar
    • Export Citation
  • Werner S., Noppeney U. (2010). Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization, J. Neurosci. 30, 26622675.

    • Search Google Scholar
    • Export Citation
  • White B. J., Munoz D. P. (2011). The superior colliculus, in: The Oxford Handbook of Eye Movements, Liversedge S. P., Gilchrist I. D., Everling S. (Eds), pp.  195214. Oxford University Press, Oxford, UK.

    • Search Google Scholar
    • Export Citation
  • Witten I. B., Knudsen E. I. (2005). Why seeing is believing: merging auditory and visual worlds, Neuron 48, 489496.

  • Wurtz R. H., Albano J. E. (1980). Visual-motor function of the primate superior colliculus, Annu. Rev. Neurosci. 3, 189226.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 284 152 15
Full Text Views 128 9 0
PDF Views & Downloads 24 8 0