Visuotactile Temporal Recalibration Transfers Across Different Locations

In: Multisensory Research

Following prolonged exposure to audiovisual asynchrony, an observer’s point of subjective simultaneity (PSS) shifts in the direction of the leading modality. It has been debated whether other sensory pairings, such as vision and touch, lead to a similar temporal recalibration, and if so, whether the internal timing mechanism underlying lag visuotactile adaptation is centralised or distributed. To address these questions, we adapted observers to vision- and tactile-leading visuotactile asynchrony on either their left or right hand side in different blocks. In one test condition, participants performed a simultaneity judgment on the adapted side (unilateral) and in another they performed a simultaneity judgment on the non-adapted side (contralateral). In a third condition, participants adapted concurrently to equal and opposite asynchronies on each side and were tested randomly on either hand (bilateral opposed). Results from the first two conditions show that observers recalibrate to visuotactile asynchronies, and that the recalibration transfers to the non-adapted side. These findings suggest a centralised recalibration mechanism not linked to the adapted side and predict no recalibration for the bilateral opposed condition, assuming the adapted effects were equal on each side. This was confirmed in the group of participants that adapted to vision- and tactile-leading asynchrony on the right and left hand side, respectively. However, the other group (vision-leading on the left and tactile-leading on the right) did show a recalibration effect, suggesting a distributed mechanism. We discuss these findings in terms of a hybrid model that assumes the co-existence of a centralised and distributed timing mechanism.

  • AlaisD.NewellF. N.MamassianP. (2010). Multisensory processing in review: from physiology to behaviour, Seeing Perceiving 23, 3–38.

  • BakemanR. (2005). Recommended effect size statistics for repeated measures designs, Behav. Res. Meth. 37, 379–384.

  • BrainardD. (1997). The psychophysics toolbox, Spat. Vis. 10, 433–436.

  • BuhusiC. V.MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing, Nat. Rev. Neurosci. 6, 755–765.

    • Search Google Scholar
    • Export Citation
  • Di LucaM.MachullaT.ErnstM. (2009). Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency, J. Vis. 9, 1–16.

    • Search Google Scholar
    • Export Citation
  • EaglemanD. M. (2008). Human time perception and its illusions, Curr. Opin. Neurobiol. 18, 131–136.

  • FujisakiW.ShimojoS.KashinoM.NishidaS. (2004). Recalibration of audiovisual simultaneity, Nat. Neurosci. 7, 773–778.

  • HansonJ. V. M.HeronJ.WhitakerD. (2008). Recalibration of perceived time across sensory modalities, Exp. Brain Res. 185, 347–352.

  • HarrarV.HarrisL. R. (2005). Simultaneity constancy: detecting events with touch and vision, Exp. Brain Res. 166, 465–473.

  • HarrarV.HarrisL. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity, Exp. Brain Res. 186, 517–524.

    • Search Google Scholar
    • Export Citation
  • HeronJ.RoachN. W.WhitakerD.HansonJ. V. M. (2010). Attention regulates the plasticity of multisensory timing, Eur. J. Neurosci. 31, 1755–1762.

    • Search Google Scholar
    • Export Citation
  • HeronJ.RoachN. W.HansonJ. V. M.McGrawP. V.WhitakerD. (2012). Audiovisual time perception is spatially specific, Exp. Brain Res. 218, 477–485.

    • Search Google Scholar
    • Export Citation
  • IkumiN.Soto-FaracoS. (2014). Selective attention modulates the direction of audio-visual temporal recalibration, PloS One 9, e99311. DOI:10.1371/journal.pone.0099311.

    • Search Google Scholar
    • Export Citation
  • KeetelsM.VroomenJ. (2007). No effect of auditory–visual spatial disparity on temporal recalibration, Exp. Brain Res. 182, 559–565.

    • Search Google Scholar
    • Export Citation
  • KeetelsM.VroomenJ. (2008). Temporal recalibration to tactile–visual asynchronous stimuli, Neurosci. Lett. 430, 130–134.

  • KingA.PalmerA. (1985). Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus, Exp. Brain Res. 60, 492–500.

    • Search Google Scholar
    • Export Citation
  • LawrenceM. A. (2014). ez: easy analysis and visualization of factorial experiments (version 4.2-2). Retrieved from http://cran.r-project.org/package=ez.

  • LewisP. A.MiallR. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging, Curr. Opin. Neurobiol. 13, 250–255.

    • Search Google Scholar
    • Export Citation
  • MaukM. D.BuonomanoD. V. (2004). The neural basis of temporal processing, Annu. Rev. Neurosci. 27, 307–340.

  • MiyazakiM.YamamotoS.UchidaS.KitazawaS. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment, Nat. Neurosci. 9, 875–877.

    • Search Google Scholar
    • Export Citation
  • NavarraJ.García-MoreraJ.SpenceC. (2012). Temporal adaptation to audiovisual asynchrony generalizes across different sound frequencies, Front. Psychol. 3, 152. DOI:10.3389/fpsyg.2012.00152.

    • Search Google Scholar
    • Export Citation
  • R Core Team (2013). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.r-project.org/.

    • Search Google Scholar
    • Export Citation
  • ReppB. H.SuY.-H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012), Psychon. Bull. Rev. 20, 403–452.

  • RoseboomW.ArnoldD. H. (2011). Twice upon a time: multiple concurrent temporal recalibrations of audiovisual speech, Psychol. Sci. 22, 872–877.

    • Search Google Scholar
    • Export Citation
  • RoseboomW.KawabeT.NishidaS. (2013). Audio-visual temporal recalibration can be constrained by content cues regardless of spatial overlap, Front. Psychol. 4, 189. DOI:10.3389/fpsyg.2013.00189.

    • Search Google Scholar
    • Export Citation
  • RStudio (2013). RStudio: integrated development environment for R (version 0.98.490), RStudio, Boston, MA, USA.

  • StetsonC.CuiX.MontagueP. R.EaglemanD. M. (2006). Motor-sensory recalibration leads to an illusory reversal of action and sensation, Neuron 51, 651–659.

    • Search Google Scholar
    • Export Citation
  • SuganoY.KeetelsM.VroomenJ. (2014). Concurrent sensorimotor temporal recalibration to different lags for the left and right hand, Front. Psychol. 5, 140. DOI:10.3389/fpsyg.2014.00140.

    • Search Google Scholar
    • Export Citation
  • SugitaY.SuzukiY. (2003). Implicit estimation of sound-arrival time, Nature 421, 911–912.

  • TakahashiK.SaikiJ.WatanabeK. (2008). Realignment of temporal simultaneity between vision and touch, Neuroreport 19, 319–322.

  • Van der BurgE.AlaisD.CassJ. (2013). Rapid recalibration to audiovisual asynchrony, J. Neurosci. 33, 14633–14637.

  • Van der BurgE.Orchard-MillsE.AlaisD. (2015). Rapid temporal recalibration is unique to audiovisual stimuli, Exp. Brain Res. 233, 53–59.

    • Search Google Scholar
    • Export Citation
  • VroomenJ.KeetelsM.de GelderB.BertelsonP. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony, Brain Res. Cogn. Brain Res. 22, 32–35.

    • Search Google Scholar
    • Export Citation
  • YarrowK.Sverdrup-StuelandI.RoseboomW.ArnoldD. H. (2013). Sensorimotor temporal recalibration within and across limbs, J. Exp. Psychol. Hum. Percept. Perform. 39, 1678–1689.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 70 63 6
Full Text Views 176 171 0
PDF Downloads 8 6 0