The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ali A. S., Rowen K. A., Iles J. F. (2003). Vestibular actions on back and lower limb muscles during postural tasks in man, J. Physiol. 546, 615–624.
Angelaki D. E., Shaikh A. G., Green A. M., Dickman J. D. (2004). Neurons compute internal models of the physical laws of motion, Nature 430, 560–564.
Avella A., Lacquaniti F. (2013). Control of reaching movements by muscle synergy combinations, Front. Comput. Neurosci. 7, 1–7.
Barnes G. R., Paige G. D. (2004). Anticipatory VOR suppression induced by visual and nonvisual stimuli in humans, J. Neurophysiol. 92, 1501–1511.
Bernier P. M., Gauthier G. M., Blouin J. (2007). Evidence for distinct, differentially adaptable sensorimotor transformations for reaches to visual and proprioceptive targets, J. Neurophysiol. 98, 1815–1819.
Bernier P. M., Burle B., Hasbroucq T., Blouin J. (2009). Spatio-temporal dynamics of reach-related neural activity for visual and somatosensory targets, Neuroimage 47, 1767–1777.
Beurze S. M., De Lange F. P., Toni I., Medendorp W. P. (2007). Integration of target and effector information in the human brain during reach planning, J. Neurophysiol. 97, 188–199.
Blouin J., Vercher J. L., Gauthier G. M., Paillard J., Bard C., Lamarre Y. (1995). Perception of passive whole-body rotations in the absence of neck and body proprioception, J. Neurophysiol. 74, 2216–2219.
Blouin J., Labrousse L., Simoneau M., Vercher J. L., Gauthier G. M. (1998a). Updating visual space during passive and voluntary head-in-space movements, Exp. Brain Res. 122, 93–100.
Blouin J., Okada T., Wolsley C., Bronstein A. (1998b). Encoding target-trunk relative position: cervical versus vestibular contribution, Exp. Brain Res. 122, 101–107.
Blouin J., Teasdale N., Mouchnino L. (2007). Vestibular signal processing in a subject with somatosensory deafferentation: the case of sitting posture, BMC Neurol. 7, 25. DOI:10.1186/1471-2377-7-25.
Blouin J., Guillaud E., Bresciani J. P., Guerraz M., Simoneau M. (2010). Insights into the control of arm movement during body motion as revealed by EMG analyses, Brain Res. 1309, 40–52.
Blouin J., Saradjian A. H., Lebar N., Guillaume A., Mouchnino L. (2014). Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements towards visual and proprioceptive targets, J. Neurophysiol. 112, 2290–2301.
Bockisch C. J., Haslwanter T. (2007). Vestibular contribution to the planning of reach trajectories, Exp. Brain Res. 182, 387–397.
Bortolami S. B., Pigeon P., Dizio P., Lackner J. R. (2008a). Dynamics model for analyzing reaching movements during active and passive torso rotation, Exp. Brain Res. 187, 525–534.
Bortolami S. B., Pigeon P., Dizio P., Lackner J. R. (2008b). Kinetic analysis of arm reaching movements during voluntary and passive rotation of the torso, Exp. Brain Res. 187, 509–523.
Bourdin C., Gauthier G., Blouin J., Vercher J. L. (2001). Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects, Neurosci. Lett. 301, 25–28.
Bresciani J. P., Blouin J., Popov K., Bourdin C., Sarlegna F., Vercher J. L., Gauthier G. M. (2002a). Galvanic vestibular stimulation in humans produces online arm movement deviations when reaching towards memorized visual targets, Neurosci. Lett. 318, 34–38.
Bresciani J. P., Blouin J., Sarlegna F., Bourdin C., Vercher J. L., Gauthier G. M. (2002b). On-line versus off-line vestibular-evoked control of goal-directed arm movements, Neuroreport 13, 1563–1566.
Bresciani J. P., Gauthier G. M., Vercher J. L., Blouin J. (2005). On the nature of the vestibular control of arm-reaching movements during whole-body rotations, Exp. Brain Res. 164, 431–441.
Burnod Y., Baraduc P., Battaglia-Mayer A., Guigon E., Koechlin E., Ferraina S., Lacquaniti F., Caminiti R. (1999). Parieto-frontal coding of reaching: an integrated framework, Exp. Brain Res. 129, 325–346.
Coello Y., Orliaguet J. P., Prablanc C. (1996). Pointing movement in an artificial perturbing inertial field: a prospective paradigm for motor control study, Neuropsychologia 34, 879–892.
Cohen L. A. (1961). Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination, J. Neurophysiol. 24, 1–11.
Cohn J. V., Dizio P., Lackner J. R. (2000). Reaching during virtual rotation: context specific compensations for expected coriolis forces, J. Neurophysiol. 83, 3230–3240.
Desmurget M., Grafton S. (2000). Forward modeling allows feedback control for fast reaching movements, Trends Cogn. Sci. 4, 423–431.
Desmurget M., Pelisson D., Rossetti Y., Prablanc C. (1998). From eye to hand: planning goal-directed movements, Neurosci. Biobehav. Rev. 22, 761–788.
Dodge R. (1923). Habituation to rotation, J. Exp. Psychol. 6, 1–35.
Ehrenfried T., Guerraz M., Thilo K. V., Yardley L., Gresty M. A. (2003). Posture and mental task performance when viewing a moving visual field, Brain Res. Cogn. Brain Res. 17, 140–153.
Fitzpatrick R. C., Day B. L. (2004). Probing the human vestibular system with galvanic stimulation, J. Appl. Physiol. 96, 2301–2316.
Fleury M., Bard C., Audiffren M., Teasdale N., Blouin J. (1994). The attentional cost of amplitude and directional requirements when pointing to targets, Q. J. Exp. Psychol. A 47A, 481–495.
Forget R., Lamarre Y. (1995). Postural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivation, Can. J. Physiol. Pharmacol. 73, 285–294.
Frissen I., Campos J. L., Souman J. L., Ernst M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating, Exp. Brain Res. 212, 163–176.
Goldberg J. M., Fernandez C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations, J. Neurophysiol. 34, 635–660.
Goldberg J. M., Fernandez C. (1975). Vestibular mechanisms, Annu. Rev. Physiol. 37, 129–162.
Guerraz M., Day B. L. (2005). Expectation and the vestibular control of balance, J. Cogn. Neurosci. 17, 463–469.
Guillaud E., Gauthier G., Vercher J. L., Blouin J. (2006a). Fusion of visuo-ocular and vestibular signals in arm motor control, J. Neurophysiol. 95, 1134–1146.
Guillaud E., Simoneau M., Gauthier G., Blouin J. (2006b). Controlling reaching movements during self-motion: body-fixed versus Earth-fixed targets, Motor Control 10, 330–347.
Guillaud E., Simoneau M., Blouin J. (2011). Prediction of the body rotation-induced torques on the arm during reaching movements: evidence from a proprioceptively deafferented subject, Neuropsychologia 49, 2055–2059.
Guitton D., Volle M. (1987). Gaze control in humans: eye–head coordination during orienting movements to targets within and beyond the oculomotor range, J. Neurophysiol. 58, 427–459.
Ivanenko Y. P., Grasso R. (1997). Integration of somatosensory and vestibular inputs in perceiving the direction of passive whole-body motion, Brain Res. Cogn. Brain Res. 5, 323–327.
Ivanenko Y., Grasso R., Israel I., Berthoz A. (1997a). Spatial orientation in humans: perception of angular whole-body displacements in two-dimensional trajectories, Exp. Brain Res. 117, 419–427.
Ivanenko Y. P., Grasso R., Israel I., Berthoz A. (1997b). The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans, J. Physiol. 502, 223–233.
Ivanenko Y. P., Grasso R., Lacquaniti F. (1999). Effect of gaze on postural responses to neck proprioceptive and vestibular stimulation in humans, J. Physiol. 519, 301–314.
Khan M. A., Franks I. M., Elliot D., Lawrence G. P., Chua R., Bernier P. M., Hansen S., Weeks D. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data, Neurosci. Biobehav. Rev. 30, 1106–1121.
Lackner J. R., DiZio P. (1992). Gravitoinertial force level affects the appreciation of limb position during muscle vibration, Brain Res. 592, 175–180.
Lackner J. R., DiZio P. (1994). Rapid adaptation to Coriolis force perturbations of arm trajectory, J. Neurophysiol. 72, 299–313.
Lajoie Y., Teasdale N., Bard C., Fleury M. (1993). Attentional demands for static and dynamic equilibrium, Exp. Brain Res. 97, 139–144.
Laurens J., Angelaki D. E. (2011). The functional significance of velocity storage and its dependence on gravity, Exp. Brain Res. 210, 407–422.
Loomis J. M., Da Silva J. A., Fujita N., Fukusima S. S. (1992). Visual space perception and visually directed action, J. Exp. Psychol. Hum. Percept. Perform. 18, 906–921.
Mars F., Archambault P. S., Feldman A. G. (2003). Vestibular contribution to combined arm and trunk motion, Exp. Brain Res. 150, 515–519.
Masson G., Proteau L., Mestre D. R. (1995). Effects of stationary and moving textured backgrounds on the visuo-oculo-manual tracking in humans, Vision Res. 35, 837–852.
Merfeld D. M., Zupan L., Peterka R. J. (1999). Humans use internal models to estimate gravity and linear acceleration, Nature 398, 615–618.
Mergner T., Nardi G. L., Becker W., Deecke L. (1983). The role of canal–neck interaction for the perception of horizontal trunk and head rotation, Exp. Brain Res. 49, 198–208.
Mergner T., Siebold C., Schweigart G., Becker W. (1991). Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation, Exp. Brain Res. 85, 389–404.
Mittelstaedt H. (1992). Somatic versus vestibular gravity reception in man, Ann. N. Y. Acad. Sci. 656, 124–139.
Mittelstaedt H. (1995). Evidence of somatic graviception from new and classical investigations, Acta Otolaryngol. Suppl. 520, 186–187.
Moreau-Debord I., Martin C. Z., Landry M., Green A. M. (2014). Evidence for a reference frame transformation of vestibular signal contributions to voluntary reaching, J. Neurophysiol. 111, 1903–1919.
Mrotek L. A., Gielen C. C., Flanders M. (2006). Manual tracking in three dimensions, Exp. Brain Res. 171, 99–115.
Nakamura T., Bronstein A. M. (1995). The perception of head and neck angular displacement in normal and labyrinthine-defective subjects, Brain 118, 1157–1168.
Philbeck J. W., Behrman M., Loomis J. M. (2001). Updating of locations during whole-body rotations in patients with hemispatial neglect, Cogn. Affect. Behav. Neurosci. 1, 330–343.
Pigeon P., Bortolami S. B., Dizio P., Lackner J. R. (2003). Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques, J. Neurophysiol. 89, 276–289.
Poulton E. C. (1981). Human manual control, in: Handbook of Physiology, The Nervous System, Motor Control, Vol. 2, Brooks V. D. (Ed.), pp. 1337–1389. American Physiological Society, Williams and Wilkins Company, Baltimore, MD, USA.
Raphan T., Matsuo V., Cohen B. (1979). Velocity storage in the vestibulo-ocular reflex arc (VOR), Exp. Brain Res. 35, 229–248.
Reichenbach A., Thielscher A., Peer A., Bulthoff H. H., Bresciani J. P. (2009). Seeing the hand while reaching speeds up on-line responses to a sudden change in target position, J. Physiol. 587, 4605–4616.
Reichenbach A., Bresciani J. P., Peer A., Bulthoff H. H., Thielscher A. (2011). Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-guided TMS, Cereb. Cortex 21, 1602–1612.
Reichenbach A., Thielscher A., Peer A., Bulthoff H. H., Bresciani J. P. (2014). A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements, Neuroimage 84, 615–625.
Sarlegna F. R., Malfait N., Bringoux L., Bourdin C., Vercher J. L. (2010). Force-field adaptation without proprioception: can vision be used to model limb dynamics? Neuropsychologia 48, 60–67.
Sarway A. M. E., Selen L. P. J., Medendorp W. P. (2013). Vestibular benefits to task savings in motor adaptation, J. Neurophysiol. 110, 1269–1277.
Schomaker J., Tesch J., Bulthoff H. H., Bresciani J. P. (2011). It is all me: the effect of viewpoint on visual-vestibular recalibration, Exp. Brain Res. 213, 245–256.
Shadmehr R., Smith M. A., Krakauer J. W. (2010). Error correction, sensory, prediction, and adaptation in motor control, Annu. Rev. Neurosci. 33, 89–108.
Shaikh A. G., Palla A., Marti S., Olasagasti I., Optican L. M., Zee D. S., Straumann D. (2013). Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities, Cerebellum 12, 97–107.
Simoneau M., Guillaud E., Blouin J. (2013). Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model, J. Neuroeng. Rehabil. 10, 54.
Sinha N., Zaher N., Shaikh A. G., Lasker A. G., Zee D. S., Tarnutzer A. A. (2008). Perception of self motion during and after passive rotation of the body around an earth-vertical axis, Prog. Brain Res. 171, 277–281.
St George R. J., Day B. L., Fitzpatrick R. C. (2011). Adaptation of vestibular signals for self-motion perception, J. Physiol. 589, 843–853.
Teasdale N., Simoneau M. (2001). Attentional demands for postural control: the effects of aging and sensory reintegration, Gait Posture 14, 203–210.
Van Beers R. J., Wolpert D. M., Haggard P. (2002). When feeling is more important than seeing in sensorimotor adaptation, Curr. Biol. 12, 834–837.
Yardley L., Gardner M., Lavie N., Gresty M. (1999). Attentional demands of perception of passive self-motion in darkness, Neuropsychologia 37, 1293–1301.
Yardley L., Papo D., Bronstein A., Gresty M., Gardner M., Lavie N., Luxon L. (2002). Attentional demands of continuously monitoring orientation using vestibular information, Neuropsychologia 40, 373–383.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 672 | 79 | 0 |
Full Text Views | 132 | 8 | 0 |
PDF Views & Downloads | 65 | 15 | 0 |
The contribution of vestibular signals to motor control has been evidenced in postural, locomotor, and oculomotor studies. Here, we review studies showing that vestibular information also contributes to the control of arm movements during whole-body motion. The data reviewed suggest that vestibular information is used by the arm motor system to maintain the initial hand position or the planned hand trajectory unaltered during body motion. This requires integration of vestibular and cervical inputs to determine the trunk motion dynamics. These studies further suggest that the vestibular control of arm movement relies on rapid and efficient vestibulomotor transformations that cannot be considered automatic. We also reviewed evidence suggesting that the vestibular afferents can be used by the brain to predict and counteract body-rotation-induced torques (e.g., Coriolis) acting on the arm when reaching for a target while turning the trunk.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 672 | 79 | 0 |
Full Text Views | 132 | 8 | 0 |
PDF Views & Downloads | 65 | 15 | 0 |