Out-of-Body Experiences and Other Complex Dissociation Experiences in a Patient with Unilateral Peripheral Vestibular Damage and Deficient Multisensory Integration

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Out-of-body experiences (OBEs) are illusory perceptions of one’s body from an elevated disembodied perspective. Recent theories postulate a double disintegration process in the personal (visual, proprioceptive and tactile disintegration) and extrapersonal (visual and vestibular disintegration) space as the basis of OBEs. Here we describe a case which corroborates and extends this hypothesis. The patient suffered from peripheral vestibular damage and presented with OBEs and lucid dreams. Analysis of the patient’s behaviour revealed a failure of visuo-vestibular integration and abnormal sensitivity to visuo-tactile conflicts that have previously been shown to experimentally induce out-of-body illusions (in healthy subjects). In light of these experimental findings and the patient’s symptomatology we extend an earlier model of the role of vestibular signals in OBEs. Our results advocate the involvement of subcortical bodily mechanisms in the occurrence of OBEs.

Out-of-Body Experiences and Other Complex Dissociation Experiences in a Patient with Unilateral Peripheral Vestibular Damage and Deficient Multisensory Integration

in Multisensory Research

Sections

References

AlvaradoC. S. (2000). Out-of-body experiences in: Varieties of Anomalous Experience: Examining the Scientific EvidenceCardeñaE.LynnS. J.KrippnerS. (Eds). American Psychological AssociationWashington, DC, USA.

AvillacM.HamedS. B.DuhamelJ.-R. (2007). Multisensory integration in the ventral intraparietal area of the macaque monkeyJ. Neurosci. 2719221932.

BerthozA.PavardB.YoungL. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual–vestibular interactionsExp. Brain Res. 23471489.

BlackmoreS. J. (1982). Out-of-body experiences, lucid dreams, and imagery: two surveysJ. Am. Soc. Psych. Res. 76301317.

BlackmoreS. (1987). Where am I? Perspectives in imagery and the out-of-body experienceJ. Ment. Imagery 115366.

BlankeO. (2012). Multisensory brain mechanisms of bodily self-consciousnessNat. Rev. Neurosci. 13556571.

BlankeO.ArzyS. (2005). The out-of-body experience: disturbed self-processing at the temporo-parietal junctionNeuroscientist 111624.

BlankeO.DieguezS. (2009). Leaving body and life behind: out-of-body and near-death experience in: The Neurology of Consciousness: Cognitive Neuroscience and NeuropathologyLaureysS.TononiG. (Eds) pp.  303325. Academic PublishersLondon, UK.

BlankeO.MohrC. (2005). Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin: implications for neurocognitive mechanisms of corporeal awareness and self-consciousnessBrain Res. Rev. 50184199.

BlankeO.OrtigueS.LandisT.SeeckM. (2002). Neuropsychology: stimulating illusory own-body perceptionsNature 419269270.

BlankeO.LandisT.SpinelliL.SeeckM. (2004). Out-of-body experience and autoscopy of neurological originBrain 127243258.

BremmerF.KlamF.DuhamelJ. R.Ben HamedS.GrafW. (2002). Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP)Eur. J. Neurosci. 1615691586.

BruggerP.RegardM.LandisT. (1997). Illusory reduplication of one’s own body: phenomenology and classification of autoscopic phenomenaCogn. Neuropsychiat. 21938.

BünningS.BlankeO. (2005). The out-of body experience: precipitating factors and neural correlatesProgr. Brain Res. 150331606.

ButlerJ. S.SmithS. T.CamposJ. L.BülthoffH. H. (2010). Bayesian integration of visual and vestibular signals for headingJ. Vis. 1023.

CalvertG. A.CampbellR.BrammerM. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortexCurr. Biol. 10649657.

CheyneJ. A.GirardT. A. (2009). The body unbound: vestibular–motor hallucinations and out-of-body experiencesCortex 45201215.

CheyneJ. A.RuefferS. D.Newby-ClarkI. R. (1999). Hypnagogic and hypnopompic hallucinations during sleep paralysis: neurological and cultural construction of the night-mareConsc. Cogn. 8319337.

CrawfordJ.GarthwaiteP. H. (2002). Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differencesNeuropsychologia 4011961208.

CyranC. A. M.BoegleR.StephanT.DieterichM.GlasauerS. (2015). Age-related decline in functional connectivity of the vestibular cortical networkBrain Struct. Funct. DOI:10.1007/s00429-014-0983-6.

DahlitzM.ParkesJ. (1993). Sleep paralysisLancet 341406407.

DemanezJ. P. (1986). [Electronystagmography aspects of peripheral and central vestibular syndromes]Acta Otorhinolaryngol. Belg. 40695858.

DevinskyO.FeldmannE.BurrowesK.BromfieldE. (1989). Autoscopic phenomena with seizuresArch. Neurol. 4610801088.

DieterichM.BrandtT. (2015). The bilateral central vestibular system: its pathways, functions, and disordersAnn. N. Y. Acad. Sci. 13431026.

DreslerM.WehrleR.SpoormakerV. I.KochS. P.HolsboerF.SteigerA.ObrigH.SamannP. G.CzischM. (2012). Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case studySleep 3510171020.

FasoldO.Von BrevernM.KuhbergM.PlonerC. J.VillringerA.LempertT.WenzelR. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imagingNeuroimage 1713841393.

FetschC. R.TurnerA. H.DeangelisG. C.AngelakiD. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perceptionJ. Neurosci. 291560115612.

FreyssG.ToupetM. (1978). [G. Freyss’ vestibulogram. Graphic representation of results of the unilateral bithermal vestibular caloric test]Rev. Laryngol. Otol. Rhinol. (Bord.) 99540550.

GackenbachJ. (1988). The psychological content of lucid versus nonlucid dreams in: Conscious Mind Sleeping BrainGackenbachJ.LaBergeS. (Eds) pp.  181220. Plenum PressNew York, NY, USA.

GackenbachJ.SnyderT.RokesL.SachauD. (1986). Lucid dreaming frequency in relation to vestibular sensitivity as measured by caloric stimulationJ. Mind Behav. 7277298.

GreenC. E. (1968). Out-of-the-Body Experiences. Institute of Psychophysical ResearchOxford.

GreenhouseH. B. (1975). The Astral Journey. DoubledayGarden City, NY, USA.

GrüsserO.PauseM.SchreiterU. (1990a). Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responsesJ. Physiol. 430559583.

GrüsserO.PauseM.SchreiterU. (1990b). Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis)J. Physiol. 430537557.

GuldinW.GrüsserO. (1998). Is there a vestibular cortex? Trends Neurosci. 21254259.

HishikawaY.ShimizuT. (1994). Physiology of REM sleep, cataplexy, and sleep paralysisAdv. Neurol. 67245271.

HuntH. T. (1989). The Multiplicity of Dreams: Memory Imagination and Consciousness. Yale University PressNew Haven, CT, USA.

IontaS.HeydrichL.LenggenhagerB.MouthonM.FornariE.ChapuisD.GassertR.BlankeO. (2011a). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspectiveNeuron 70363374.

IontaS.GassertR.BlankeO. (2011b). Multi-sensory and sensorimotor foundation of bodily self-consciousness — an interdisciplinary approachFront. Psychol. 2383. DOI:10.3389/fpsyg.2011.00383.

JamaliM.MitchellD. E.DaleA.CarriotJ.SadeghiS. G.CullenK. E. (2014). Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitutionJ. Physiol. 59215651580.

Jáuregui-RenaudK.SangF. Y. P.GrestyM. A.GreenD. A.BronsteinA. M. (2008). Depersonalisation/derealisation symptoms and updating orientation in patients with vestibular diseaseJ. Neurol. Neurosurg. Psychiat. 79276283.

LacknerJ. R.DiZioP. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientationAnnu. Rev. Psychol. 56115147.

LenggenhagerB.TadiT.MetzingerT.BlankeO. (2007). Video ergo sum: manipulating bodily self-consciousnessScience 31710961099.

LeslieK.OgilvieR. (1996). Vestibular dreams: the effect of rocking on dream mentationDreaming 61.

LopezC. (2013). A neuroscientific account of how vestibular disorders impair bodily self-consciousnessFront. Integr. Neurosci. 791. DOI:10.3389/fnint.2013.00091.

LopezC.BlankeO. (2011). The thalamocortical vestibular system in animals and humansBrain Res. Rev. 67119146.

LopezC.BorelL.MagnanJ.LacourM. (2005). Torsional optokinetic nystagmus after unilateral vestibular loss: asymmetry and compensationBrain 12815111524.

LopezC.LacourM.AhmadiA. E.MagnanJ.BorelL. (2007). Changes of visual vertical perception: a long-term sign of unilateral and bilateral vestibular lossNeuropsychologia 4520252037.

LopezC.HeydrichL.SeeckM.BlankeO. (2010). Abnormal self-location and vestibular vertigo in a patient with right frontal lobe epilepsyEpilepsy Behav. 17289292.

LopezC.BlankeO.MastF. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysisNeuroscience 212159179.

MaguireE. A.BurgessN.DonnettJ. G.FrackowiakR. S.FrithC. D.O’keefeJ. (1998). Knowing where and getting there: a human navigation networkScience 280921924.

MazzolaL.LopezC.FaillenotI.ChouchouF.MauguièreF.IsnardJ. (2014). Vestibular responses to direct stimulation of the human insular cortexAnn. Neurol. 76609619.

MergnerT.RosemeierT. (1998). Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions — a conceptual modelBrain Res. Rev. 28118135.

MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2012). Multisensory integration and aging in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds) pp. 381394. CRC PressBoca Raton FL, USA.

MuldoonS.CarringtonH. (1951). The Phenomena of Astral Projection. RiderLondon.

MurrayM. M.WallaceM. T.DeangelisG. C.AngelakiD. E. (2012). Visual–vestibular integration for self-motion perception in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds) pp. 629652. CRC PressBoca Raton FL, USA.

NelsonK. R.MattinglyM.SchmittF. A. (2007). Out-of-body experience and arousalNeurology 68794795.

NoreikaV.WindtJ. M.LenggenhagerB.KarimA. A. (2010). New perspectives for the study of lucid dreaming: from brain stimulation to philosophical theories of self-consciousnessInt. J. Dream Res. 33645.

OsisK.MitchellJ. L. (1977). Physiological correlates of reported out-of-body experiencesJ. Soc. Psych. Res. 49525536.

OverneyL. S.ArzyS.BlankeO. (2009). Deficient mental own-body imagery in a neurological patient with out-of-body experiences due to cannabis useCortex 45228235.

PfeifferC.LopezC.SchmutzV.DuenasJ. A.MartuzziR.BlankeO. (2013). Multisensory origin of the subjective first-person perspective: visual, tactile, and vestibular mechanismsPLoS One 8e61751. DOI:10.1371/journal.pone.0061751.

PfeifferC.SchmutzV.BlankeO. (2014). Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspectiveExp. Brain Res. 23240214033.

PoyntonJ. (1975). Results of an out-of-the-body survey in: Parapsychology in South AfricaPoyntonJ. C. (Ed.) pp.  120121. South African Society for Psychical ResearchJohannesburg, South Africa.

PrsaM.GaleS.BlankeO. (2012). Self-motion leads to mandatory cue fusion across sensory modalitiesJ. Neurophysiol. 10822822291.

RogersM. W.WardmanD. L.LordS. R.FitzpatrickR. C. (2001). Passive tactile sensory input improves stability during standingExp. Brain Res. 136514522.

SangF. Y. P.Jauregui-RenaudK.GreenD. A.BronsteinA. M.GrestyM. A. (2006). Depersonalisation/derealisation symptoms in vestibular diseaseJ. Neurol. Neurosurg. Psychiat. 77760766.

SchönhammerR. (2004). Fliegen Fallen Flüchten: Die Psychologie Intensiver Träume. dgvt-VerlagTübingen, Germany.

SheilsD. (1978). A cross-cultural study of beliefs in out-of-the-body experiences, waking and sleepingJ. Soc. Psych. Res. 49697741.

SieglerI.Viaud-DelmonI.IsraëlI.BerthozA. (2000). Self-motion perception during a sequence of whole-body rotations in darknessExp. Brain Res. 1346673.

SmithP. F.CurthoysI. S. (1989). Mechanisms of recovery following unilateral labyrinthectomy: a reviewBrain Res. Rev. 14155180.

TartC. T. (1974). Out-of-body experiences in: Psychic Exploration: A Challenge for ScienceWhiteJ. (Ed.) pp.  349373. PutnamNew York.

TerhuneD. B. (2009). The incidence and determinants of visual phenomenology during out-of-body experiencesCortex 45236242.

ValkoY.LewisR. F.PriesolA. J.MerfeldD. M. (2012). Vestibular labyrinth contributions to human whole-body motion discriminationJ. Neurosci. 321353713542.

Van ElkM.BlankeO. (2012). Balancing bistable perception during self-motionExp. Brain Res. 222219228.

VogeleyK.MayM.RitzlA.FalkaiP.ZillesK.FinkG. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousnessJ. Cogn. Neurosci. 16817827.

Von BrevernM.FaldonM. E.BrookesG. B.GrestyM. A. (1997). Evaluating 3D semicircular canal function by perception of rotationOtol. Neurotol. 18484493.

WaespeW.HennV. (1978). Conflicting visual–vestibular stimulation and vestibular nucleus activity in alert monkeysExp. Brain Res. 33203211.

WexlerM.PaneraiF.LamouretI.DroulezJ. (2001). Self-motion and the perception of stationary objectsNature 4098588.

WindtJ. M.MetzingerT. (2007). The philosophy of dreaming and self-consciousness: what happens to the experiential subject during the dream state? in: The New Science of Dreaming: Volume 3. Cultural and Theoretical PerspectivesBarrettD.McNamaraP. (Eds) pp.  193247. Praeger Publishers/Greenwood Publishing GroupWestport, CT, USA.

WindtJ. M.NoreikaV. (2011). How to integrate dreaming into a general theory of consciousness — a critical review of existing positions and suggestions for future researchConsc. Cogn. 2010911107.

Figures

  • View in gallery

    Results of the bithermal water caloric testing. (A–D) Nystagmic responses for each ear irrigation: (A, B) Caloric testing of the right ear (A with 44°C; B with 30°C), (C, D) caloric testing of the left ear (C with 44°C; D with 30°C). (E) Freyss diagram (Freyss and Toupet, 1978) of horizontal (left and right) nystagmus showing the numerical values of the peak slow phase velocity of horizontal nystagmus (y-axes) for each irrigation. The x-axis indicates the percentage of weakness of one ear compared to the other. In case of symmetrical reflexivity, the intersection of both curves is located at 0% on the x-axis and 0°/s on the y-axis. In our patient, the caloric testing showed a decreased nystagmic response in terms of frequency and amplitude (A–D) as well as a paresis of 27% (the norm being ⩽20%; Demanez, 1986) of the right horizontal canal (E) with a discrete direction preponderance of the left nystagmus.

  • View in gallery

    (A) Schematic view of the experimental setup. The patient was seated in a rotating chair that delivered whole-body rotations in the yaw plane. A computer monitor was positioned in front of him, showing a 3D pattern of dots that simulated self-rotation in the yaw plane. (B) Timeline of one experimental trial. The patient experienced two consecutive rotations in the same direction and had to decide whether the second rotation was bigger or smaller than the first one.

  • View in gallery

    Results of the visuo-vestibular integration task. The patient fails to show integration, as his bimodal threshold (red line) is not better than the best single cue threshold (vestibular, black line) and significantly different from the predicted optimal threshold (dashed red line) on the deficit side. Error bars represent bootstrap standard error.

  • View in gallery

    (A) Patient’s full body illusion questionnaire results for synchronous (black bars) and asynchronous (white bars) stroking conditions. The red lines represent the 95% confidence intervals for the control group (N=15), in the synchronous (solid lines) and asynchronous (dotted lines) conditions. (B) The questions employed.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 23 23 17
Full Text Views 4 4 4
PDF Downloads 2 2 2
EPUB Downloads 1 1 1