Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Interest in crossmodal correspondences has recently seen a renaissance thanks to numerous studies in human adults. Yet, still very little is known about crossmodal correspondences in children, particularly in sensory pairings other than audition and vision. In the current study, we investigated whether 4–5-year-old children match auditory pitch to the spatial motion of visual objects (audio-visual condition). In addition, we investigated whether this correspondence extends to touch, i.e., whether children also match auditory pitch to the spatial motion of touch (audio-tactile condition) and the spatial motion of visual objects to touch (visuo-tactile condition). In two experiments, two different groups of children were asked to indicate which of two stimuli fitted best with a centrally located third stimulus (Experiment 1), or to report whether two presented stimuli fitted together well (Experiment 2). We found sensitivity to the congruency of all of the sensory pairings only in Experiment 2, suggesting that only under specific circumstances can these correspondences be observed. Our results suggest that pitch–height correspondences for audio-visual and audio-tactile combinations may still be weak in preschool children, and speculate that this could be due to immature linguistic and auditory cues that are still developing at age five.

Audio-Visual, Visuo-Tactile and Audio-Tactile Correspondences in Preschoolers

in Multisensory Research

Sections

References

BahrickL. E.LickliterR.FlomR. (2004). Intersensory redundancy guides the development of selective attention, perception, and cognition in infancyCurr. Dir. Psychol. Sci. 1399102.

ChenY.-C.SpenceC. (2010). When hearing the bark helps to identify the dog: semantically-congruent sounds modulate the identification of masked picturesCognition 114389404.

DavidsonM. C.AmsoD.AndersonL. C.DiamondA. (2006). Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switchingNeuropsychologia 4420372078.

DemattèM. L.SanabriaD.SpenceC. (2006). Cross-modal associations between odors and colorsChem. Senses 31531538.

DoehrmannO.NaumerM. J. (2008). Semantics and the multisensory brain: how meaning modulates processes of audio-visual integrationBrain Res. 1242136150.

DolscheidS.HunniusS.CasasantoD.MajidA. (2014). Prelinguistic infants are sensitive to space-pitch associations found across culturesPsychol. Sci. 2512561261.

ErnstM. O. (2007). Learning to integrate arbitrary signals from vision and touchJ. Vis. 7114.

EvansK. K.TreismanA. (2010). Natural cross-modal mappings between visual and auditory featuresJ. Vis. 10112.

FelsJ.ButhmannP.VorländerM. (2004). Head-related transfer functions of childrenActa Acust. United Acust. 90918927.

GallaceA.SpenceC. (2006). Multisensory synesthetic interactions in the speeded classification of visual sizePercept. Psychophys. 6811911203.

GilbertA. N.MartinR.KempS. E. (1996). Cross-modal correspondence between vision and olfaction: the color of smellsAm. J. Psychol. 109335351.

GrassiM. (2005). Do we hear size or sound? Balls dropped on platesPercept. Psychophys. 67274284.

GrassiM.SoranzoA. (2009). MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimationsBehav. Res. Methods 412028.

GrassiM.PastoreM.LemaitreG. (2013). Looking at the world with your ears: how do we get the size of an object from its sound? Acta Psychol. 14396104.

HaryuE.KajikawaS. (2012). Are higher-frequency sounds brighter in color and smaller in size? Auditory–visual correspondences in 10-month-old infantsInfant Behav. Dev. 35727732.

KleinerM.BrainardD.PelliD.InglingA.MurrayR.BroussardC. (2007). What’s new in Psychtoolbox-3Perception 36ECVP Abstract Suppl. 1.

KnöferleK.SpenceC. (2012). Crossmodal correspondences between sounds and tastesPsychon. B. Rev. 199921006.

KoppenC.AlsiusA.SpenceC. (2008). Semantic congruency and the Colavita visual dominance effectExp. Brain Res. 184533546.

LaurientiP. J.KraftR. A.MaldjianJ. A.BurdetteJ. H.WallaceM. T. (2004). Semantic congruence is a critical factor in multisensory behavioral performanceExp. Brain Res. 158405414.

LewkowiczD. J. (2000). The development of intersensory temporal perception: an epigenetic systems/limitations viewPsychol. Bull. 126281308.

LewkowiczD. J.MinarN. J. (2014). Infants are not sensitive to synesthetic cross-modality correspondences. A comment to Walker et al. (2010)Psychol. Sci. 25832834.

LudwigV. U.SimnerJ. (2013). What colour does that feel? Tactile–visual mapping and the development of cross-modalityCortex 4910891099.

MarksL. E.HammealR.BornsteinM. (1987). Perceiving similarity and comprehending metaphorMonogr. Soc. Res. Child Dev. 521102.

MartinoG.MarksL. E. (2000). Cross-modal interaction between vision and touch: the role of synesthetic correspondencePerception 29745754.

MaurerD.PathmanT.MondlochC. J. (2006). The shape of boubas: sound–shape correspondences in toddlers and adultsDev. Sci. 9316322.

MelaraR. D. (1989). Dimensional interaction between color and pitchJ. Exp. Psychol. Hum. Percept. Perform. 156979.

MelaraR. D.MarksL. E. (1990). Processes underlying dimensional interactions: correspondences between linguistic and nonlinguistic dimensionsMem. Cognit. 18477495.

MondlochC. J.MaurerD. (2004). Do small white balls squeak? Pitch-object correspondences in young childrenCogn. Affect. Behav. Neurosci. 4133136.

OccelliV.SpenceC.ZampiniM. (2009). Compatibility effects between sound frequency and tactile elevationNeuroreport 20793797.

PariseC.SpenceC. (2009). ‘When birds of a feather flock together’: synesthetic correspondences modulate audiovisual integration in non-synesthetesPLoS One 4e5664. DOI:10.1371/journal.pone.0005664.

PariseC. V.SpenceC. (2013). Audiovisual crossmodal correspondences in: The Oxford Handbook of SynesthesiaSimnerJ.HubbardE. M. (Eds) pp.  790815. Oxford University PressOxford, UK.

PariseC.KnorreK.ErnstM. O. (2014). Natural auditory scene statistics shapes human spatial hearingProc. Natl Acad. Sci. USA 11161046108.

PrattC. C. (1930). The spatial character of high and low tonesJ. Exp. Psychol. 13278.

RusconiE.KwanB.GiordanoB. L.UmiltaC.ButterworthB. (2006). Spatial representation of pitch height: the SMARC effectCognition 99113129.

ShepardR. N. (1964). Circularity in judgments of relative pitchJ. Acoust. Soc. Am. 3623462353.

SlobodenyukN.JraissatiY.KansoA.GhanemL.ElhajjI. (in press). Cross-modal associations between color and hapticsAtten. Percept. Psychophys. DOI:10.3758/s13414-015-0837-1.

SmithL. B.SeraM. D. (1992). A developmental analysis of the polar structure of dimensionsCogni. Psychol. 2499142.

SpenceC. (2011). Crossmodal correspondences: a tutorial reviewAtten. Percept. Psychophys. 73971995.

SteinB. E. (Ed.) (2012). The New Handbook of Multisensory Processing. MIT PressCambridge, MA, USA.

SteinB. E.HuneycuttS. W.MeredithA. (1988). Neurons and behavior: the same rules of multisensory integration applyBrain Res. 448355358.

WalkerP.BremnerJ. G.MasonU.SpringJ.MattockK.SlaterA.JohnsonS. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondencesPsychol. Sci. 212125.

WalkerP.BremnerJ. G.MasonU.SpringJ.MattockK.SlaterA.JohnsonS. P. (2014). Preverbal infants are sensitive to crossmodal correspondences. Much ado about the null results of Lewkowicz and Minar (2014)Psychol. Sci. 25835836.

Figures

  • View in gallery

    One frame of the visual stimulus, the visual barber-pole (a); spectrogram of the Shepard–Risset glissando (b) and a photo depicting how the tactile stimulus was delivered to the participant (c). This figure is published in colour in the online version.

  • View in gallery

    Proportion of congruent responses for the three sensory pairings (audio-visual, visuo-tactile and audio-tactile) in Experiment 1. Asterisks indicate performance above 50%. Error bars represent 95% binomial proportion confidence interval.

  • View in gallery

    Proportion of congruent responses for the three sensory pairings (audio-visual, visuo-tactile and audio-tactile) in Experiment 2. Asterisks indicate performance above 50%. Error bars represent 95% binomial proportion confidence interval.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 40 40 18
Full Text Views 77 77 60
PDF Downloads 9 9 7
EPUB Downloads 0 0 0