Sounds Modulate the Perceived Duration of Visual Stimuli via Crossmodal Integration

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Previous studies have shown that the perceived duration of visual stimuli can be strongly distorted by auditory stimuli presented simultaneously. In this study, we examine whether sounds presented separately from target visual stimuli alter the perceived duration of the target’s presentation. The participants’ task was to classify the duration of the target visual stimuli as perceived by them into four categories. Our results demonstrate that a sound presented before and after a visual target increases or decreases the perceived visual duration depending on the inter-stimulus interval between the sounds and the visual stimulus. In addition, three tones presented before and after a visual target did not increase or decrease the perceived visual duration. This indicates that auditory perceptual grouping prevents intermodal perceptual grouping, and eliminates crossmodal effects. These findings suggest that the auditory–visual integration, rather than a high arousal state caused by the presentation of the preceding sound, can induce distortions of perceived visual duration, and that inter- and intramodal perceptual grouping plays an important role in crossmodal time perception. These findings are discussed with reference to the Scalar Expectancy Theory.

Sounds Modulate the Perceived Duration of Visual Stimuli via Crossmodal Integration

in Multisensory Research

Sections

References

AlaisD.BurrD. (2004). The ventriloquist effect results from near-optimal bimodal integrationCurr. Biol. 14257262.

AngrilliA.CherubiniP.PaveseA.ManfrediniS. (1997). The influence of affective factors on time perceptionPercept. Psychophys. 59972982.

BausenhartK. M.De la RosaM. D.UlrichR. (2014). Multimodal integration of time: visual and auditory contributions to perceived duration and sensitivityExp. Psychol. 61310322.

BertelsonP.AscherslebenG. (2003). Temporal ventriloquism: crossmodal interaction on the time dimension: 1. Evidence from auditory–visual temporal order judgmentInt. J. Psychophysiol. 50147155.

BrunsP.GetzmannS. (2008). Audiovisual influences on the perception of visual apparent motion: exploring the effect of a single soundActa Psychol. 129273283.

BurrD.BanksM. S.MorroneM. C. (2009). Auditory dominance over vision in the perception of interval durationExp. Brain Res. 1984957.

ChenK.YehS. (2009). Asymmetric cross-modal effects in time perceptionActa Psychol. 130225234.

CookL. A.Van ValkenburgD. L. (2009). Audio-visual organization and the temporal ventriloquist effect between grouped sequences: evidence that unimodal grouping precedes cross-modal integrationPerception 3812201233.

De la RosaM. D.BausenhartK. M. (2013). Multimodal integration of interval duration: temporal ventriloquism or changes in pacemaker rateTiming Time Percept. 1189215.

Droit-VoletS. (2003). Alerting attention and time perception in childrenJ. Exp. Child Psychol. 85372384.

GibbonJ. (1977). Scalar expectancy theory and Weber’s law in animal timingPsychol. Rev. 84279325.

GibbonJ.ChurchR. M.MeckW. H. (1984). Scalar timing in memoryAnn. N.Y. Acad. Sci. 4235277.

GrondinS. (2001). Discriminating time intervals presented in sequences marked by visual signalsPercept. Psychophys. 6312141228.

JazayeriM.ShadlenM. N. (2010). Temporal context calibrates interval timingNat. Neurosci. 1310201026.

KeetelsM.StekelenburgJ.VroomenJ. (2007). Auditory grouping occurs prior to intersensory pairing: evidence from temporal ventriloquismExp. Brain Res. 180449456.

KlinkP. C.MontijnJ. S.Van WezelR. J. A. (2011). Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock ratesAtten. Percept. Psychophys. 73219236.

LejeuneH.WeardenJ. H. (2009). Vierordt’s The Experimental Study of the Time Sense (1868) and its legacyEur. J. Cogn. Psychol. 21941960.

LosS. A.SchutM. L. J. (2008). The effective time course of preparationCogn. Psychol. 572055.

MayerK. M.Di LucaM.ErnstM. O. (2014). Duration perception in crossmodally-defined intervalsActa Psychol. 14729.

McDonaldJ. J.Teder-SälejärviW. A.HillyardS. A. (2000). Involuntary orienting to sound improves visual perceptionNature 407906908.

Morein-ZamirS.Soto-FaracoS.KingstoneA. (2003). Auditory capture of vision: examining temporal ventriloquismCogn. Brain Res. 17154163.

MorroneM. C.RossJ.BurrD. (2005). Saccadic eye movements cause compression of time as well as spaceNat. Neurosci. 8950954.

NakajimaY.Ten HoopenG.Van der WilkR. (1991). A new illusion of time perceptionMusic Percept. 8431438.

NiemiP.NäätänenR. (1981). Foreperiod and simple reaction timePsychol. Bull. 89133162.

NoulhianeM.MellaN.SamsonS.RagotR.PouthasV. (2007). How emotional auditory stimuli modulate time perceptionEmotion 7697704.

OnoF.KawaharaJ. (2007). The subjective size of visual stimuli affects the perceived duration of their presentationPercept. Psychophys. 69952957.

Penton-VoakI. S.EdwardsH.PercivalA.WeardenJ. H. (1996). Speeding up an internal clock in humans? Effects of click trains on subjective durationJ. Exp. Psychol. Anim. Behav. Process. 22307320.

PosnerM. I.NissenM. J.KleinR. M. (1976). Visual dominance: an information-processing account of its origins and significancePsychol. Rev. 83157171.

RoseD.SummersJ. (1995). Duration illusions in a train of visual stimuliPerception 2411771187.

ShiZ.ChenL.MüllerH. J. (2010). Auditory temporal modulation of the visual Ternus effect: the influence of time intervalExp. Brain Res. 2037237835.

SpenceC.NgoM. K. (2012). Does attention or multisensory integration explain the cross-modal facilitation of masked visual target identification in: The New Handbook of Multisensory ProcessingSteinB. E. (Ed.) pp.  345358. MIT PressCambridge, MA, USA.

VroomenJ.De GelderB. (2000). Sound enhances visual perception: cross-modal effects of auditory organization on visionJ. Exp. Psychol. Hum. Percept. Perform. 2615831590.

WalkerJ. T.ScottK. J. (1981). Auditory–visual conflicts in the perceived duration of lights, tones and gapsJ. Exp. Psychol. Hum. Percept. Perform. 713271339.

WatanabeK.ShimojoS. (2001). When sound affects vision: effects of auditory grouping on visual motion perceptionPsychol. Sci. 12109116.

WeardenJ. H.Penton-VoakI. S. (1995). Feeling the heat: body temperature and the rate of subjective time, revisitedQ. J. Exp. Psychol. 48129141.

WeardenJ. H.EdwardsH.FakhriM.PercivalA. (1998). Why “sounds are judged longer than lights”: application of a model of the internal clock in humansQ. J. Exp. Psychol. 5197120.

WelchR. B.WarrenD. H. (1980). Immediate perceptual response to intersensory discrepancyPsychol. Bull. 88638667.

YarrowK.RothwellJ. C. (2003). Manual chronostasis: tactile perception precedes physical contactCurr. Biol. 1311341139.

Figures

  • View in gallery

    Schematic representation of the procedure in Experiment 1. Participants categorized the presentation duration of visual stimuli into one of four categories on each trial. In the sound-present condition, a 50-ms sound was presented before and after the visual target stimuli.

  • View in gallery

    Results for Experiment 1. The vertical axis indicates the mean scores of the participants’ categorizations (from 0 to 3) in the duration category-estimation task in both panels. Higher y values represent longer perceived durations. The horizontal axis in left panel indicates the ISI between the auditory non-targets and visual targets. ‘NS’ indicates trials in which sound was not presented. The horizontal axis in the right panel indicates the duration of the visual stimuli. The right panel only represents the 0 ms, 200 ms, and NS conditions to more clearly illustrate the relationship between the duration of the visual stimuli and the effects of sounds. Error bars represent standard errors (n=15).

  • View in gallery

    Schematic representation of the procedure in Experiment 2. Participants categorized the presentation duration of visual stimuli into one of four categories on each trial. In the sound-present condition, a 50 ms sound was presented three times before and after the visual targets.

  • View in gallery

    Results for Experiments 2. The vertical axes indicate the mean scores of the participants’ categorizations in the duration category-estimation task. Higher y values represent longer perceived durations. The horizontal axes indicate the ISI between the auditory and visual stimuli. ‘NS’ indicates trials on which sounds were not presented. Error bars represent standard errors (n=8).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 18 18 13
Full Text Views 72 72 66
PDF Downloads 3 3 1
EPUB Downloads 0 0 0