Depth: the Forgotten Dimension in Multisensory Research

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The last quarter of a century has seen a dramatic rise of interest in the spatial constraints on multisensory integration. However, until recently, the majority of this research has investigated integration in the space directly in front of the observer. The space around us, however, extends in three spatial dimensions in the front and to the rear beyond such a limited area. The question to be addressed in this review concerns whether multisensory integration operates according to the same rules throughout the whole of three-dimensional space. The results reviewed here not only show that the space around us seems to be divided into distinct functional regions, but they also suggest that multisensory interactions are modulated by the region of space in which stimuli happen to be presented. We highlight a number of key limitations with previous research in this area, including: (1) The focus on only a very narrow region of two-dimensional space in front of the observer; (2) the use of static stimuli in most research; (3) the study of observers who themselves have been mostly static; and (4) the study of isolated observers. All of these factors may change the way in which the senses interact at any given distance, as can the emotional state/personality of the observer. In summarizing these salient issues, we hope to encourage researchers to consider these factors in their own research in order to gain a better understanding of the spatial constraints on multisensory integration as they affect us in our everyday life.

Depth: the Forgotten Dimension in Multisensory Research

in Multisensory Research



AgganisB. T.MudayJ. A.SchirilloJ. A. (2010). Visual biasing of auditory localization in azimuth and depthPercept. Mot. Skills 111872892.

AimolaL.SchindlerI.SimoneA. M.VenneriA. (2012). Near and far space neglect: task sensitivity and anatomical substratesNeuropsychologia 5011151123.

AlaisD.BurrD. (2004). The ventriloquist effect results from near-optimal bimodal integrationCurr. Biol. 14257262.

AlaisD.CarlileS. (2005). Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of soundProc. Natl Acad. Sci. USA 10222442247.

AlsiusA.NavarraJ.CampbellR.Soto-FaracoS. (2005). Audiovisual integration of speech falters under high attention demandsCurr. Biol. 15839843.

ArnoldD. H.JohnstonA.NishidaS. (2005). Timing sight and soundVis. Res. 4512751284.

AvenantiA.AnnelaL.SerinoA. (2012). Suppression of premotor cortex disrupts motor coding of peripersonal spaceNeuroimage 63281288.

AvillacM.DeneveS.OlivierE.PougetA.DuhamelJ. R. (2005). Reference frames for representing visual and tactile locations in parietal cortexNat. Neurosci. 8941949.

BassolinoM.FinisguerraA.CanzoneriE.SerinoA.PozzoT. (2015). Dissociating effect of upper limb non-use and overuse on space and body representationsNeuropsychologia 70385392.

BertelsonP.VroomenJ.De GelderB.DriverJ. (2000). The ventriloquist effect does not depend on the direction of deliberate visual attentionPercept. Psychophys. 62321332.

BisiachE.PeraniD.VallarG.BertiA. (1986). Unilateral neglect: personal and extra-personalNeuropsychologia 24759767.

BowenA. L.RamachandranR.MudayJ. A.SchirilloJ. A. (2011). Visual signals bias auditory targets in azimuth and depthExp. Brain Res. 214403414.

BremmerF.SchlackA.ShahN. J.ZafirisO.KubischikM.HoffmannK.ZillesK.FinkG. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeysNeuron 29287296.

BremnerA.LewkowiczD.SpenceC. (Eds) (2012). Multisensory Development. Oxford University PressOxford, UK.

BrozzoliC.PavaniF.UrquizarC.CardinaliL.FarneA. (2009). Grasping actions remap peripersonal spaceNeuroreport 20913917.

BrozzoliC.CardinaliL.PavaniF.FarnèA. (2010). Action-specific remapping of peripersonal spaceNeuropsychologia 48796802.

BrozzoliC.GentileG.PetkovaV. I.EhrssonH. H. (2011). FMRI adaptation reveals a cortical mechanism for the coding of space near the handJ. Neurosci. 3190239031.

BrozzoliC.MakinT. R.CardinaliL.HolmesN. P.FarnèA. (2012). Peripersonal space: a multisensory interface for body-object interactions in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds) pp.  447464. CRC PressBoca Raton, FL, USA.

BrozzoliC.GentileG.BergouignanL.EhrssonH. H. (2013). A shared representation of the space near oneself and others in the human premotor cortexCurr. Biol. 2317641768.

BrozzoliC.EhrssonH. H.FarnèA. (2014). Multisensory representation of the space near the hand from perception to action and interindividual interactionsNeuroscientist 20122135.

BufacchiR. J.LiangM.GriffinL. D.IannettiG. D. (in press). A geometric model of defensive peripersonal spaceJ. Neurophysiol. DOI:10.1152/jn.00691.2015.

BurgoonJ. K.JonesS. B. (1976). Toward a theory of personal space expectations and their violationsHum. Commun. Res. 2131146.

CalvertG. A.ThesenT. (2004). Multisensory integration: methodological approaches and emerging principles in the human brainJ. Physiol. Paris 98191205.

CanzoneriE.MagossoE.SerinoA. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humansPLoS One 7e44306. DOI:10.1371/journal.pone.0044306.

CanzoneriE.UbaldiS.RastelliV.FinisguerraA.BassolinoM.SerinoA. (2013a). Tool-use reshapes the boundaries of body and peripersonal space representationsExp. Brain Res. 2282542.

CanzoneriE.MarzollaM.AmoresanoA.VerniG.SerinoA. (2013b). Amputation and prosthesis implantation shape body and peripersonal space representationsSci. Rep. 32844. DOI:10.1038/srep02844.

CappeC.ThutG.RomeiV.MurrayM. M. (2009). Selective integration of auditory–visual looming cues by humansNeuropsychologia 4710451052.

CappeC.ThelenA.RomeiV.ThutG.MurrayM. M. (2012). Looming signals reveal synergistic principles of multisensory integrationJ. Neurosci. 3211711182.

CardinaliL.BrozzoliC.FarnèA. (2010). Peripersonal space and body schema in: Encyclopedia of Behavioural NeuroscienceKoobG. G.Le MoalM.ThompsonR. F. (Eds) pp.  4046. Academic PressOxford, UK.

ClarkA. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive scienceBehav. Brain Sci. 36181204.

CléryJ.GuipponiO.OdouardS.WardakC.HamedS. B. (2015a). Impact prediction by looming visual stimuli enhances tactile detectionJ. Neurosci. 3541794189.

CléryJ.GuipponiO.WardakC.HamedS. B. (2015b). Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: knowns and unknownsNeuropsychologia 70313326.

CookeD. F.GrazianoM. S. (2004). Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movementsJ. Neurophysiol. 9116481660.

CookeD. F.TaylorC. S.MooreT.GrazianoM. S. (2003). Complex movements evoked by microstimulation of the ventral intraparietal areaProc. Natl Acad. Sci. USA 10061636168.

CoreyD. P.HudspethA. J. (1979). Ionic basis of the receptor potential in a vertebrate hair cellNature 281(5733) 675677.

CorneilB. D.Van WanrooijM.MunozD. P.Van OpstalA. J. (2002). Auditory–visual interactions subserving goal-directed saccades in a complex sceneJ. Neurophysiol. 88438454.

CoweyA.SmallM.EllisS. (1994). Left visuo–spatial neglect can be worse in far than in near spaceNeuropsychologia 3210591066.

De HaanA. M.Van der StigchelS.NijnensC. M.DijkermanH. C. (2014). The influence of object identity on obstacle avoidance reaching behaviourActa Psychol. 1509499.

De PaepeA. L.CrombezG.SpenceC.LegrainV. (2014). Mapping nociceptive stimuli in a peripersonal frame of reference: evidence from a temporal order judgment taskNeuropsychologia 56219228.

de VignemontF.IannettiG. D. (2015). How many peripersonal spaces? Neuropsychologia 70327334.

Di LucaM. (2014). Light source distance affects perceived audiovisual simultaneityProcedia Soc. Behav. Sci. 126151.

DoseyM. A.MeiselsM. (1969). Personal space and self-protectionJ. Pers. Soc. Psychol. 119397.

DuhamelJ. R.BremmerF.BenHamedS.GrafW. (1997). Spatial invariance of visual receptive fields in parietal cortex neuronsNature 389(6653) 845848.

EngelG. R.DoughertyW. G. (1971). Visual–auditory distance constancyNature 234(5327) 308.

ErnstM. O.BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashionNature 415(6870) 429433.

FalchierA.ClavagnierS.BaroneP.KennedyH. (2002). Anatomical evidence of multimodal integration in primate striate cortexJ. Neurosci. 2257495759.

FarnèA.LàdavasE. (2000). Dynamic size-change of hand peripersonal space following tool useNeuroreport 1116451649.

FarnèA.LàdavasE. (2002). Auditory peripersonal space in humansJ. Cogn. Neurosci. 1410301043.

FelipeN. J.SommerR. (1966). Invasions of personal spaceSoc. Probl. 14206214.

FerriF.Tajadura-JiménezA.VäljamäeA.VastanoR.CostantiniM. (2015). Motion-inducing approaching sounds shape the boundaries of multisensory peripersonal spaceNeuropsychologia 70468475.

FogassiL.GalleseV.FadigaL.LuppinoG.MatelliM.RizzolattiG. (1996). Coding of peripersonal space in inferior premotor cortex (area F4)J. Neurophysiol. 76141157.

FrensM. A.Van OpstalA. J.Van der WilligenR. F. (1995). Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movementsPercept. Psychophys. 57802816.

FristonK. (2005). A theory of cortical responsesPhil. Trans. R. Soc. B Biol. Sci. 360(1456) 815836.

FristonK.KiebelS. (2009). Predictive coding under the free-energy principlePhil. Trans. R. Soc. B Biol. Sci. 364(1521) 12111221.

GallaceA.SpenceC. (2014). In Touch With the Future: the Sense of Touch From Cognitive Neuroscience to Virtual Reality. Oxford University PressOxford, UK.

GalliG.NoelJ. P.CanzoneriE.BlankeO.SerinoA. (2015). The wheelchair as a full-body tool extending the peripersonal spaceFront. Psychol. 6639. DOI:10.3389/fpsyg.2015.00639.

GardnerM. B. (1968). Proximity image effect in sound localisationJ. Acoust. Soc. Am. 43163.

GardnerE. P.BabuK. S.ReitzenS. D.GhoshS.BrownA. S.ChenJ.HallA. L.HerzlingerM. D.KohlensteinJ. B.RoJ. Y. (2007). Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviorsJ. Neurophysiol. 97387406.

GibsonJ. J.CrooksL. E. (1938). A theoretical field-analysis of automobile-drivingAm. J. Psychol. 51453471.

GondanM.MinakataK. (in press). A tutorial on testing the race model inequalityAtten. Percept. Psychophys. DOI:10.3758/s13414-015-1018-y.

GrazianoM. S.CookeD. F. (2006). Parieto-frontal interactions, personal space, and defensive behaviorNeuropsychologia 44845859.

GrazianoM. S.CookeD. F.TaylorC. S. (2000). Coding the location of the arm by sightScience 290(5497) 17821786.

GrazianoM. S. A.GrossC. G. (1994). The representation of extrapersonal space: a possible role for bimodal visual–tactile neurons in: The Cognitive NeurosciencesGazzanigaM. S. (Ed.) pp.  10211034. MIT PressCambridge, MA, USA.

GrazianoM. S.HuX. T.GrossC. G. (1997). Visuospatial properties of ventral premotor cortexJ. Neurophysiol. 7722682292.

GrazianoM. S.ReissL. A.GrossC. G. (1999). A neuronal representation of the location of nearby soundsNature 397(6718) 428430.

HallE. T. (1966). The Hidden Dimension. Doubleday and Co.New York, NY, USA.

HalliganP. W.MarshallJ. C. (1991). Left neglect for near but not far space in manNature 350(6318) 498500.

HarrisL.HarrarV.JaeklP.KopinskaA. (2010). Mechanisms of simultaneity constancy in: Space and Time in Perception and ActionNijhawanR.KhuranaB. (Eds) pp.  232253. Cambridge University PressCambridge, UK.

HedigerH. (1955). Studies of the Psychology and Behaviour of Captive Animals in Zoos and Circuses. Criterion BooksNew York, NY, USA.

HeedT.HabetsB.SebanzN.KnoblichG. (2010). Others’ actions reduce crossmodal integration in peripersonal spaceCurr. Biol. 2013451349.

HoC.SpenceC. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attentionJ. Exp. Psychol. Appl. 11157174.

HoC.SpenceC. (2006). Verbal interface design: do verbal directional cues automatically orient visual spatial attention? Comput. Human Behav. 22733748.

HoC.SpenceC. (2009). Using peripersonal warning signals to orient a driver’s gazeHum. Factors 51539556.

HoC.SpenceC. (2014). Effectively responding to tactile stimulation: do homologous cue and effector locations really matter? Acta Psychol. 1513239.

HoC.TanH. Z.SpenceC. (2005). Using spatial vibrotactile cues to direct visual attention in driving scenesTransp. Res. Part F: Traffic Psychol. Behav. 8397412.

HoC.TanH. Z.SpenceC. (2006). The differential effect of vibrotactile and auditory cues on visual spatial attentionErgonomics 49724738.

HoC.ReedN.SpenceC. (2007). Multisensory in-car warning signals for collision avoidanceHum. Factors 4911071114.

HoC.GrayR.SpenceC. (2014). Reorienting driver attention with dynamic tactile cuesIEEE Trans. Haptics 78694.

HolmesN. P. (2012). Does tool use extend peripersonal space? A review and re-analysisExp. Brain Res. 218273282.

HuangR. S.ChenC. F.TranA. T.HolsteinK. L.SerenoM. I. (2012). Mapping multisensory parietal face and body areas in humansProc. Natl Acad. Sci. USA 1091811418119.

HyvarinenJ. (1981). Regional distribution of functions in parietal association area 7 of the monkeyBrain Res. 206287303.

IannettiG. D.MourauxA. (2010). From the neuromatrix to the pain matrix (and back)Exp. Brain Res. 205112.

IshidaH.NakajimaK.InaseM.MurataA. (2010). Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortexJ. Cogn. Neurosci. 228396.

KandulaM.HofmanD.DijkermanH. C. (2015). Visuo-tactile interactions are dependent on the predictive value of the visual stimulusNeuropsychologia 70358366.

KingA. J. (2009). Visual influences on auditory spatial learningPhil. Trans. R. Soc. B Biol. Sci. 364(1515) 331339.

KoelewijnT.BronkhorstA.TheeuwesJ. (2010). Attention and the multiple stages of multisensory integration: a review of audiovisual studiesActa Psychol. 134372384.

KopinskaA.HarrisL. R. (2004). Simultaneity constancyPerception 3310491060.

LàdavasE.FarnèA. (2004). Visuo-tactile representation of near-the-body spaceJ. Physiol. Paris 98161170.

LeeJ. D.McGeheeD. V.BrownT. L.ReyesM. L. (2002). Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulatorHum. Factors 44314334.

LeinonenL. (1980). Functional properties of neurones in the posterior part of area 7 in awake monkeyActa Physiol. Scand. 108301308.

LewaldJ.GuskiR. (2004). Auditory–visual temporal integration as a function of distance: no compensation for sound-transmission time in human perceptionNeurosci. Lett. 357119122.

LourencoS. F.LongoM. R.PathmanT. (2011). Near space and its relation to claustrophobic fearCognition 119448453.

MakinT. R.HolmesN. P.ZoharyE. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcusJ. Neurosci. 27731740.

MakinT. R.HolmesN. P.BrozzoliC.RossettiY.FarneA. (2009). Coding of visual space during motor preparation: approaching objects rapidly modulate corticospinal excitability in hand-centered coordinatesJ. Neurosci. 291184111851.

MakinT. R.HolmesN. P.BrozzoliC.FarnèA. (2012). Keeping the world at hand: rapid visuomotor processing for hand–object interactionsExp. Brain Res. 219421428.

MakinT. R.BrozzoliC.CardinaliL.HolmesN. P.FarnèA. (2015). Left or right? Rapid visuomotor coding of hand laterality during motor decisionsCortex 64289292.

MaravitaA.IrikiA. (2004). Tools for the body (schema)Trends Cogn. Sci. 87986.

MaravitaA.HusainM.ClarkeK.DriverJ. (2001). Reaching with a tool extends visual–tactile interactions into far space: evidence from cross-modal extinctionNeuropsychologia 39580585.

MarzocchiN.BreveglieriR.GallettiC.FattoriP. (2008). Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur. J. Neurosci. 27775789.

McDonaldJ. J.Teder-SälejärviW. A.WardL. M. (2001). Multisensory integration and crossmodal attention effects in the human brainScience 292(5523) 1791.

MelzackR. (1999). From the gate to the neuromatrixPain 82S121S126.

MengerR.Van der StigchelS.DijkermanH. C. (in prep.). Multisensory interactions during obstacle avoidance.

MillerJ. (1982). Divided attention: evidence for coactivation with redundant signalsCogn. Psychol. 14247279.

MillerJ. (1986). Timecourse of coactivation in bimodal divided attentionPercept. Psychophys. 40331343.

MoayediM.LiangM.SimA. L.HuL.HaggardP.IannettiG. D. (2015). Laser-evoked vertex potentials predict defensive motor actionsCereb. Cortex 25(12) 47894798.

MoellerB.ZoppkeH.FringsC. (in press). What a car does to your perception: distance evaluations differ from within and outside of a carPsychonom. Bull. Rev. DOI:10.3758/s13423-015-0954-9.

MoseleyG. L.GallaceA.SpenceC. (2012). Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’Neurosci. Biobehav. Rev. 363446.

MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2008). Modality-specific selective attention attenuates multisensory integrationExp. Brain Res. 1843952.

MurrayM.SpenceC.HarrisL. (2013). International Multisensory Research Forum 2012 meeting special issueMultisens. Res. 26287289.

NoelJ. P.GrivazP.MarmaroliP.LissekH.BlankeO.SerinoA. (2015a). Full body action remapping of peripersonal space: the case of walkingNeuropsychologia 70375384.

NoelJ. P.PfeifferC.BlankeO.SerinoA. (2015b). Peripersonal space as the space of the bodily selfCognition 1444957.

OccelliV.SpenceC.ZampiniM. (2011). Audiotactile interactions in front and rear spaceNeurosci. Biobehav. Rev. 35589598.

OosterhofN. N.TipperS. P.DowningP. E. (2012). Viewpoint (in) dependence of action representations: an MVPA studyJ. Cogn. Neurosci. 24975989.

PöppelE.ArtinT. (1988). Mindworks: Time and Conscious Experience. Harcourt Brace JovanovichSan Diego, CA, USA.

PrevicF. H. (1998). The neuropsychology of 3-D spacePsychol. Bull. 124123164.

PughE. N.LambT. D. (1993). Amplification and kinetics of the activation steps in phototransductionBiochim. Biophys. Acta 1141111149.

RizzolattiG.ScandolaraC.MatelliM.GentilucciM. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responsesBehav. Brain Res. 2147163.

RizzolattiG.FadigaL.FogassiL.GalleseV. (1997). The space around usScience 277(5323) 190191.

SamboC. F.ForsterB. (2009). An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial ruleJ. Cogn. Neurosci. 2115501559.

SamboC. F.ForsterB. (2011). When far is near: ERP correlates of crossmodal spatial interactions between tactile and mirror-reflected visual stimuliNeurosci. Lett. 5001015.

SamboC. F.IannettiG. D. (2013). Better safe than sorry? The safety margin surrounding the body is increased by anxietyJ. Neurosci. 331422514230.

SantangeloV.HoC.SpenceC. (2008). Capturing spatial attention with multisensory cuesPsychonom. Bull. Rev. 15398403.

SchnapfJ. L.KraftT. W.BaylorD. A. (1987). Spectral sensitivity of human cone photoreceptorsNature 325(6103) 439441.

SchroederC. E.FoxeJ. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortexBrain Res.: Cogn. Brain Res. 14187198.

SchroederC. E.FoxeJ. J. (2004). Multisensory convergence in early cortical processing in: The Handbook of Multisensory ProcessesCalvertG. A.SpenceC.SteinB. E. (Eds) pp.  295309. MIT PressCambridge, MA, USA.

SerenoM. I.HuangR. S. (2006). A human parietal face area contains aligned head-centered visual and tactile mapsNat. Neurosci. 913371343.

SerinoA.AnnellaL.AvenantiA. (2009). Motor properties of peripersonal space in humansPLoS One 4e6582. DOI:10.1371/journal.pone.0006582.

SerinoA.CanzoneriE.AvenantiA. (2011). Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: an rTMS studyJ. Cogn. Neurosci. 2329562967.

SerinoA.CanzoneriE.MarzollaM.Di PellegrinoG.MagossoE. (2015). Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approachFront. Behav. Neurosci. 94. DOI:10.3389/fnbeh.2015.00004.

ShamsL.KamitaniY.ShimojoS. (2000). What you see is what you hearNature 408(6814) 788.

ShamsL.KamitaniY.ThompsonS.ShimojoS. (2001). Sound alters visual evoked potentials in humansNeuroreport 1238493852.

ShamsL.WoznyD. R.KimR.SeitzA. (2011). Influences of multisensory experience on subsequent unisensory processingFront. Psychol. 2264. DOI:10.3389/fpsyg.2011.00264.

Soto-FaracoS.NavarraJ.AlsiusA. (2004). Assessing automaticity in audiovisual speech integration: evidence from the speeded classification taskCognition 92B13B23.

SpenceC. (2011). Assessing the consequences of tool-use for the representation of peripersonal space in humans in: Tool Use and Causal CognitionMcCormackT.HoerlC.ButterfillS. (Eds) pp.  220247. Oxford University PressOxford, UK.

SpenceC. (2012). Drive safely with neuroergonomicsPsychologist 25664667.

SpenceC. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial ruleAnn. NY Acad. Sci. 12963149.

SpenceC. (2015). Multisensory flavor perceptionCell 1612435.

SpenceC.DriverJ. (2000). Attracting attention to the illusory location of a sound: reflexive crossmodal orienting and ventriloquismNeuroreport 1120572061.

SpenceC.DriverJ. (Eds) (2004). Crossmodal Space and Crossmodal Attention. Oxford University PressOxford, UK.

SpenceC.HoC. (2008). Multisensory warning signals for event perception and safe drivingTheor. Issues Ergon. Sci. 9523554.

SpenceC.SantangeloV. (2009). Capturing spatial attention with multisensory cues: a reviewHear. Res. 258134142.

SpenceC.SquireS. B. (2003). Multisensory integration: maintaining the perception of synchronyCurr. Biol. 13R519R521.

SpenceC.PavaniF.MaravitaA.HolmesN. (2004). Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: evidence from the crossmodal congruency taskJ. Physiol. Paris 98171189.

SpenceC.PavaniF.MaravitaA.HolmesN. P. (2008). Multi-sensory interactions in: Haptic Rendering: Foundations Algorithms and ApplicationsLinM. C.OtaduyM. A. (Eds) pp.  2152. AK PetersWellesley, MA, USA.

SpenceC.PariseC.ChenY.-C. (2011). The Colavita visual dominance effect in: Frontiers in the Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. (Eds) pp.  523550. CRC PressBoca Raton, FL, USA.

SteinB. E. (Ed.) (2012). The New Handbook of Multisensory Processing. MIT PressCambridge, MA, USA.

SteinB. E.MeredithM. (1990). Multisensory integrationAnn. NY Acad. Sci. 6085170.

SteinB. E.MeredithM. A. (1993). The Merging of the Senses. MIT PressCambridge, MA, USA.

SteinB. E.BurrD.ConstantinidisC.LaurientiP. J.MeredithM. A.PerraultT. J.RamachandranR.RöderB.RowlandB. A.SathianK.SchroederC. E.ShamsL.StanfordT. R.WallaceM. T.YuL.LewkowiczD. J. (2010). Semantic confusion regarding the development of multisensory integration: a practical solutionEur. J. Neurosci. 3117131720.

StevensonR. A.FisterJ. K.BarnettZ. P.NidifferA. R.WallaceM. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performanceExp. Brain Res. 219121137.

SugitaY.SuzukiY. (2003). Audiovisual perception: implicit estimation of sound-arrival timeNature 421(6926) 911.

TaborA.CatleyM. J.GandeviaS. C.ThackerM. A.SpenceC.MoseleyG. L. (2015). The close proximity of threat: altered distance perception in the anticipation of painFront. Psychol. 6626. DOI:10.3389/fpsyg.2015.00626.

TaffouM.Viaud-DelmonI. (2014). Cynophobic fear adaptively extends peri-personal spaceFront. Psychiatry 5122. DOI:10.3389/fpsyt.2014.00122.

TalsmaD. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mindFront. Integr. Neurosci. 919. DOI:10.3389/fnint.2015.00019.

TalsmaD.WoldorffM. G. (2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activityJ. Cogn. Neurosci. 1710981114.

TalsmaD.DotyT. J.WoldorffM. G. (2007). Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb. Cortex 17679690.

TalsmaD.SenkowskiD.Soto-FaracoS.WoldorffM. G. (2010). The multifaceted interplay between attention and multisensory integrationTrends Cogn. Sci. 14400410.

Ten BrinkA. F.NijboerT. C. W.Van der StoepN.Van der StigchelS. (2014). The influence of vertically and horizontally aligned visual distractors on aurally guided saccadic eye movementsExp. Brain Res. 23213571366.

TeneggiC.CanzoneriE.di PellegrinoG.SerinoA. (2013). Social modulation of peripersonal space boundariesCurr. Biol. 23406411.

TipperS. P.HowardL. A.JacksonS. R. (1997). Selective reaching to grasp: evidence for distractor interference effectsVis. Cogn. 4138.

VagnoniE.LourencoS. F.LongoM. R. (2012). Threat modulates perception of looming visual stimuliCurr. Biol. 22R826R827.

Van der StigchelS.MeeterM.TheeuwesJ. (2006). Eye movement trajectories and what they tell usNeurosci. Biobehav. Rev. 30666679.

Van der StoepN.Di LucaM. (in prep.). Audiovisual integration in near and far extrapersonal space.

Van der StoepN.Visser-MeilyJ. M. A.KappelleL. J.De KortP. L. M.HuismanK. D.EijsackersA. L.KouwenhovenM.Van der StigchelS.NijboerT. C. W. (2013). Exploring near and far regions of space: distance specific visuospatial neglect after strokeJ. Clin. Exp. Neuropsychol. 35799811.

Van der StoepN.NijboerT. C. W.Van der StigchelS. (2014). Exogenous orienting of crossmodal attention in 3-D space: support for a depth-aware crossmodal attentional systemPsychonom. Bull. Rev. 21708714.

Van der StoepN.NijboerT. C. W.Van der StigchelS.SpenceC. (2015a). Multisensory interactions in the depth-plane in front and rear space: a reviewNeuropsychologia 70335349.

Van der StoepN.Van der StigchelS.NijboerT. C. W. (2015b). Exogenous spatial attention decreases audiovisual integrationAtten. Percept. Psychophys. 77464482.

Van der StoepN.SpenceC.NijboerT. C. W.Van der StigchelS. (2015c). On the relative contributions of multisensory integration and crossmodal exogenous spatial attention to multisensory response enhancementActa Psychol. 1622028.

Van der StoepN.Van der StigchelS.NijboerT. C. W.Van der SmagtM. J. (in press). Audiovisual integration in near and far space: effects of changes in distance and stimulus effectivenessExp. Brain Res. DOI:10.1007/s00221-015-4248-2.

VroomenJ.KeetelsM. (2010). Perception of intersensory synchrony: a tutorial reviewAtten. Percept. Psychophys. 72871884.

VroomenJ.BertelsonP.De GelderB. (2001). The ventriloquist effect does not depend on the direction of automatic visual attentionPercept. Psychophys. 63651659.

VuilleumierP.ValenzaN.MayerE.ReverdinA.LandisT. (1998). Near and far visual space in unilateral neglectAnn. Neurol. 43406410.

WallaceM. T.SteinB. E. (2007). Early experience determines how the senses will interactJ. Neurophysiol. 97921926.

WallaceM. T.PerraultT. J.HairstonW. D.SteinB. E. (2004). Visual experience is necessary for the development of multisensory integrationJ. Neurosci. 2495809584.

YueZ.JiangY.LiY.WangP.ChenQ. (2015). Enhanced visual dominance in far spaceExp. Brain Res. 23328332843.

ZouH.MüllerH. J.ShiZ. (2012). Non-spatial sounds regulate eye movements and enhance visual searchJ. Vis. 122. DOI:10.1167/12.5.2.


  • View in gallery

    Bird’s-eye view of the different regions of space discussed in this review. The dashed circles around the hands represent just one of the various body-part-related regions of multisensory frontal peripersonal space that have been documented in neurophysiological studies conducted in monkeys. (Figure adjusted from Van der Stoep et al., 2015a.)

  • View in gallery

    Bird’s-eye view of the different distances in lateral space and in depth (left panel) and the elevation and depth (right panel) relative to the body (of the participant) from which stimuli have been presented in previous studies of multisensory interactions. PPS = peripersonal space, EPS = extrapersonal space, RS = reachable space. This figure is published in colour in the online version.

  • View in gallery

    Schematic bird’s-eye view of the different factors that modulate the distance at which multisensory interactions relevant to the body are enhanced. This figure is published in colour in the online version.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 169 169 35
Full Text Views 71 71 48
PDF Downloads 9 9 5
EPUB Downloads 3 3 0