The last quarter of a century has seen a dramatic rise of interest in the spatial constraints on multisensory integration. However, until recently, the majority of this research has investigated integration in the space directly in front of the observer. The space around us, however, extends in three spatial dimensions in the front and to the rear beyond such a limited area. The question to be addressed in this review concerns whether multisensory integration operates according to the same rules throughout the whole of three-dimensional space. The results reviewed here not only show that the space around us seems to be divided into distinct functional regions, but they also suggest that multisensory interactions are modulated by the region of space in which stimuli happen to be presented. We highlight a number of key limitations with previous research in this area, including: (1) The focus on only a very narrow region of two-dimensional space in front of the observer; (2) the use of static stimuli in most research; (3) the study of observers who themselves have been mostly static; and (4) the study of isolated observers. All of these factors may change the way in which the senses interact at any given distance, as can the emotional state/personality of the observer. In summarizing these salient issues, we hope to encourage researchers to consider these factors in their own research in order to gain a better understanding of the spatial constraints on multisensory integration as they affect us in our everyday life.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agganis B. T., Muday J. A., Schirillo J. A. (2010). Visual biasing of auditory localization in azimuth and depth, Percept. Mot. Skills 111, 872–892.
Aimola L., Schindler I., Simone A. M., Venneri A. (2012). Near and far space neglect: task sensitivity and anatomical substrates, Neuropsychologia 50, 1115–1123.
Alais D., Burr D. (2004). The ventriloquist effect results from near-optimal bimodal integration, Curr. Biol. 14, 257–262.
Alais D., Carlile S. (2005). Synchronizing to real events: subjective audiovisual alignment scales with perceived auditory depth and speed of sound, Proc. Natl Acad. Sci. USA 102, 2244–2247.
Alsius A., Navarra J., Campbell R., Soto-Faraco S. (2005). Audiovisual integration of speech falters under high attention demands, Curr. Biol. 15, 839–843.
Arnold D. H., Johnston A., Nishida S. (2005). Timing sight and sound, Vis. Res. 45, 1275–1284.
Avenanti A., Annela L., Serino A. (2012). Suppression of premotor cortex disrupts motor coding of peripersonal space, Neuroimage 63, 281–288.
Avillac M., Deneve S., Olivier E., Pouget A., Duhamel J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex, Nat. Neurosci. 8, 941–949.
Bassolino M., Finisguerra A., Canzoneri E., Serino A., Pozzo T. (2015). Dissociating effect of upper limb non-use and overuse on space and body representations, Neuropsychologia 70, 385–392.
Bertelson P., Vroomen J., De Gelder B., Driver J. (2000). The ventriloquist effect does not depend on the direction of deliberate visual attention, Percept. Psychophys. 62, 321–332.
Bisiach E., Perani D., Vallar G., Berti A. (1986). Unilateral neglect: personal and extra-personal, Neuropsychologia 24, 759–767.
Bowen A. L., Ramachandran R., Muday J. A., Schirillo J. A. (2011). Visual signals bias auditory targets in azimuth and depth, Exp. Brain Res. 214, 403–414.
Bremmer F., Schlack A., Shah N. J., Zafiris O., Kubischik M., Hoffmann K., Zilles K., Fink G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys, Neuron 29, 287–296.
Bremner A., Lewkowicz D., Spence C. (Eds) (2012). Multisensory Development. Oxford University Press, Oxford, UK.
Brozzoli C., Pavani F., Urquizar C., Cardinali L., Farne A. (2009). Grasping actions remap peripersonal space, Neuroreport 20, 913–917.
Brozzoli C., Cardinali L., Pavani F., Farnè A. (2010). Action-specific remapping of peripersonal space, Neuropsychologia 48, 796–802.
Brozzoli C., Gentile G., Petkova V. I., Ehrsson H. H. (2011). FMRI adaptation reveals a cortical mechanism for the coding of space near the hand, J. Neurosci. 31, 9023–9031.
Brozzoli C., Makin T. R., Cardinali L., Holmes N. P., Farnè A. (2012). Peripersonal space: a multisensory interface for body-object interactions, in: The Neural Bases of Multisensory Processes, Murray M. M., Wallace M. T. (Eds), pp. 447–464. CRC Press, Boca Raton, FL, USA.
Brozzoli C., Gentile G., Bergouignan L., Ehrsson H. H. (2013). A shared representation of the space near oneself and others in the human premotor cortex, Curr. Biol. 23, 1764–1768.
Brozzoli C., Ehrsson H. H., Farnè A. (2014). Multisensory representation of the space near the hand from perception to action and interindividual interactions, Neuroscientist 20, 122–135.
Bufacchi R. J., Liang M., Griffin L. D. & Iannetti G. D. (in press). A geometric model of defensive peripersonal space, J. Neurophysiol. DOI:10.1152/jn.00691.2015.
Burgoon J. K., Jones S. B. (1976). Toward a theory of personal space expectations and their violations, Hum. Commun. Res. 2, 131–146.
Calvert G. A., Thesen T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain, J. Physiol. Paris 98, 191–205.
Canzoneri E., Magosso E., Serino A. (2012). Dynamic sounds capture the boundaries of peripersonal space representation in humans, PLoS One 7, e44306. DOI:10.1371/journal.pone.0044306.
Canzoneri E., Ubaldi S., Rastelli V., Finisguerra A., Bassolino M., Serino A. (2013a). Tool-use reshapes the boundaries of body and peripersonal space representations, Exp. Brain Res. 228, 25–42.
Canzoneri E., Marzolla M., Amoresano A., Verni G., Serino A. (2013b). Amputation and prosthesis implantation shape body and peripersonal space representations, Sci. Rep. 3, 2844. DOI:10.1038/srep02844.
Cappe C., Thut G., Romei V., Murray M. M. (2009). Selective integration of auditory–visual looming cues by humans, Neuropsychologia 47, 1045–1052.
Cappe C., Thelen A., Romei V., Thut G., Murray M. M. (2012). Looming signals reveal synergistic principles of multisensory integration, J. Neurosci. 32, 1171–1182.
Cardinali L., Brozzoli C., Farnè A. (2010). Peripersonal space and body schema, in: Encyclopedia of Behavioural Neuroscience, Koob G. G., Le Moal M., Thompson R. F. (Eds), pp. 40–46. Academic Press, Oxford, UK.
Clark A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science, Behav. Brain Sci. 36, 181–204.
Cléry J., Guipponi O., Odouard S., Wardak C., Hamed S. B. (2015a). Impact prediction by looming visual stimuli enhances tactile detection, J. Neurosci. 35, 4179–4189.
Cléry J., Guipponi O., Wardak C., Hamed S. B. (2015b). Neuronal bases of peripersonal and extrapersonal spaces, their plasticity and their dynamics: knowns and unknowns, Neuropsychologia 70, 313–326.
Cooke D. F., Graziano M. S. (2004). Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements, J. Neurophysiol. 91, 1648–1660.
Cooke D. F., Taylor C. S., Moore T., Graziano M. S. (2003). Complex movements evoked by microstimulation of the ventral intraparietal area, Proc. Natl Acad. Sci. USA 100, 6163–6168.
Corey D. P., Hudspeth A. J. (1979). Ionic basis of the receptor potential in a vertebrate hair cell, Nature 281(5733), 675–677.
Corneil B. D., Van Wanrooij M., Munoz D. P., Van Opstal A. J. (2002). Auditory–visual interactions subserving goal-directed saccades in a complex scene, J. Neurophysiol. 88, 438–454.
Cowey A., Small M., Ellis S. (1994). Left visuo–spatial neglect can be worse in far than in near space, Neuropsychologia 32, 1059–1066.
De Haan A. M., Van der Stigchel S., Nijnens C. M., Dijkerman H. C. (2014). The influence of object identity on obstacle avoidance reaching behaviour, Acta Psychol. 150, 94–99.
De Paepe A. L., Crombez G., Spence C., Legrain V. (2014). Mapping nociceptive stimuli in a peripersonal frame of reference: evidence from a temporal order judgment task, Neuropsychologia 56, 219–228.
de Vignemont F., Iannetti G. D. (2015). How many peripersonal spaces? Neuropsychologia 70, 327–334.
Di Luca M. (2014). Light source distance affects perceived audiovisual simultaneity, Procedia Soc. Behav. Sci. 126, 151.
Dosey M. A., Meisels M. (1969). Personal space and self-protection, J. Pers. Soc. Psychol. 11, 93–97.
Duhamel J. R., Bremmer F., BenHamed S., Graf W. (1997). Spatial invariance of visual receptive fields in parietal cortex neurons, Nature 389(6653), 845–848.
Engel G. R., Dougherty W. G. (1971). Visual–auditory distance constancy, Nature 234(5327), 308.
Ernst M. O., Banks M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415(6870), 429–433.
Falchier A., Clavagnier S., Barone P., Kennedy H. (2002). Anatomical evidence of multimodal integration in primate striate cortex, J. Neurosci. 22, 5749–5759.
Farnè A., Làdavas E. (2000). Dynamic size-change of hand peripersonal space following tool use, Neuroreport 11, 1645–1649.
Farnè A., Làdavas E. (2002). Auditory peripersonal space in humans, J. Cogn. Neurosci. 14, 1030–1043.
Felipe N. J., Sommer R. (1966). Invasions of personal space, Soc. Probl. 14, 206–214.
Ferri F., Tajadura-Jiménez A., Väljamäe A., Vastano R., Costantini M. (2015). Motion-inducing approaching sounds shape the boundaries of multisensory peripersonal space, Neuropsychologia 70, 468–475.
Fogassi L., Gallese V., Fadiga L., Luppino G., Matelli M., Rizzolatti G. (1996). Coding of peripersonal space in inferior premotor cortex (area F4), J. Neurophysiol. 76, 141–157.
Frens M. A., Van Opstal A. J., Van der Willigen R. F. (1995). Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements, Percept. Psychophys. 57, 802–816.
Friston K. (2005). A theory of cortical responses, Phil. Trans. R. Soc. B Biol. Sci. 360(1456), 815–836.
Friston K., Kiebel S. (2009). Predictive coding under the free-energy principle, Phil. Trans. R. Soc. B Biol. Sci. 364(1521), 1211–1221.
Gallace A., Spence C. (2014). In Touch With the Future: the Sense of Touch From Cognitive Neuroscience to Virtual Reality. Oxford University Press, Oxford, UK.
Galli G., Noel J. P., Canzoneri E., Blanke O., Serino A. (2015). The wheelchair as a full-body tool extending the peripersonal space, Front. Psychol. 6, 639. DOI:10.3389/fpsyg.2015.00639.
Gardner M. B. (1968). Proximity image effect in sound localisation, J. Acoust. Soc. Am. 43, 163.
Gardner E. P., Babu K. S., Reitzen S. D., Ghosh S., Brown A. S., Chen J., Hall A. L., Herzlinger M. D., Kohlenstein J. B., Ro J. Y. (2007). Neurophysiology of prehension. I. Posterior parietal cortex and object-oriented hand behaviors, J. Neurophysiol. 97, 387–406.
Gibson J. J., Crooks L. E. (1938). A theoretical field-analysis of automobile-driving, Am. J. Psychol. 51, 453–471.
Gondan M. & Minakata K. (in press). A tutorial on testing the race model inequality, Atten. Percept. Psychophys. DOI:10.3758/s13414-015-1018-y.
Graziano M. S., Cooke D. F. (2006). Parieto-frontal interactions, personal space, and defensive behavior, Neuropsychologia 44, 845–859.
Graziano M. S., Cooke D. F., Taylor C. S. (2000). Coding the location of the arm by sight, Science 290(5497), 1782–1786.
Graziano M. S. A., Gross C. G. (1994). The representation of extrapersonal space: a possible role for bimodal visual–tactile neurons, in: The Cognitive Neurosciences, Gazzaniga M. S. (Ed.), pp. 1021–1034. MIT Press, Cambridge, MA, USA.
Graziano M. S., Hu X. T., Gross C. G. (1997). Visuospatial properties of ventral premotor cortex, J. Neurophysiol. 77, 2268–2292.
Graziano M. S., Reiss L. A., Gross C. G. (1999). A neuronal representation of the location of nearby sounds, Nature 397(6718), 428–430.
Hall E. T. (1966). The Hidden Dimension. Doubleday and Co., New York, NY, USA.
Halligan P. W., Marshall J. C. (1991). Left neglect for near but not far space in man, Nature 350(6318), 498–500.
Harris L., Harrar V., Jaekl P., Kopinska A. (2010). Mechanisms of simultaneity constancy, in: Space and Time in Perception and Action, Nijhawan R., Khurana B. (Eds), pp. 232–253. Cambridge University Press, Cambridge, UK.
Hediger H. (1955). Studies of the Psychology and Behaviour of Captive Animals in Zoos and Circuses. Criterion Books, New York, NY, USA.
Heed T., Habets B., Sebanz N., Knoblich G. (2010). Others’ actions reduce crossmodal integration in peripersonal space, Curr. Biol. 20, 1345–1349.
Ho C., Spence C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention, J. Exp. Psychol. Appl. 11, 157–174.
Ho C., Spence C. (2006). Verbal interface design: do verbal directional cues automatically orient visual spatial attention? Comput. Human Behav. 22, 733–748.
Ho C., Spence C. (2009). Using peripersonal warning signals to orient a driver’s gaze, Hum. Factors 51, 539–556.
Ho C., Spence C. (2014). Effectively responding to tactile stimulation: do homologous cue and effector locations really matter? Acta Psychol. 151, 32–39.
Ho C., Tan H. Z., Spence C. (2005). Using spatial vibrotactile cues to direct visual attention in driving scenes, Transp. Res. Part F: Traffic Psychol. Behav. 8, 397–412.
Ho C., Tan H. Z., Spence C. (2006). The differential effect of vibrotactile and auditory cues on visual spatial attention, Ergonomics 49, 724–738.
Ho C., Reed N., Spence C. (2007). Multisensory in-car warning signals for collision avoidance, Hum. Factors 49, 1107–1114.
Ho C., Gray R., Spence C. (2014). Reorienting driver attention with dynamic tactile cues, IEEE Trans. Haptics 7, 86–94.
Holmes N. P. (2012). Does tool use extend peripersonal space? A review and re-analysis, Exp. Brain Res. 218, 273–282.
Huang R. S., Chen C. F., Tran A. T., Holstein K. L., Sereno M. I. (2012). Mapping multisensory parietal face and body areas in humans, Proc. Natl Acad. Sci. USA 109, 18114–18119.
Hyvarinen J. (1981). Regional distribution of functions in parietal association area 7 of the monkey, Brain Res. 206, 287–303.
Iannetti G. D., Mouraux A. (2010). From the neuromatrix to the pain matrix (and back), Exp. Brain Res. 205, 1–12.
Ishida H., Nakajima K., Inase M., Murata A. (2010). Shared mapping of own and others’ bodies in visuotactile bimodal area of monkey parietal cortex, J. Cogn. Neurosci. 22, 83–96.
Kandula M., Hofman D., Dijkerman H. C. (2015). Visuo-tactile interactions are dependent on the predictive value of the visual stimulus, Neuropsychologia 70, 358–366.
King A. J. (2009). Visual influences on auditory spatial learning, Phil. Trans. R. Soc. B Biol. Sci. 364(1515), 331–339.
Koelewijn T., Bronkhorst A., Theeuwes J. (2010). Attention and the multiple stages of multisensory integration: a review of audiovisual studies, Acta Psychol. 134, 372–384.
Kopinska A., Harris L. R. (2004). Simultaneity constancy, Perception 33, 1049–1060.
Làdavas E., Farnè A. (2004). Visuo-tactile representation of near-the-body space, J. Physiol. Paris 98, 161–170.
Lee J. D., McGehee D. V., Brown T. L., Reyes M. L. (2002). Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator, Hum. Factors 44, 314–334.
Leinonen L. (1980). Functional properties of neurones in the posterior part of area 7 in awake monkey, Acta Physiol. Scand. 108, 301–308.
Lewald J., Guski R. (2004). Auditory–visual temporal integration as a function of distance: no compensation for sound-transmission time in human perception, Neurosci. Lett. 357, 119–122.
Lourenco S. F., Longo M. R., Pathman T. (2011). Near space and its relation to claustrophobic fear, Cognition 119, 448–453.
Makin T. R., Holmes N. P., Zohary E. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus, J. Neurosci. 27, 731–740.
Makin T. R., Holmes N. P., Brozzoli C., Rossetti Y., Farne A. (2009). Coding of visual space during motor preparation: approaching objects rapidly modulate corticospinal excitability in hand-centered coordinates, J. Neurosci. 29, 11841–11851.
Makin T. R., Holmes N. P., Brozzoli C., Farnè A. (2012). Keeping the world at hand: rapid visuomotor processing for hand–object interactions, Exp. Brain Res. 219, 421–428.
Makin T. R., Brozzoli C., Cardinali L., Holmes N. P., Farnè A. (2015). Left or right? Rapid visuomotor coding of hand laterality during motor decisions, Cortex 64, 289–292.
Maravita A., Iriki A. (2004). Tools for the body (schema), Trends Cogn. Sci. 8, 79–86.
Maravita A., Husain M., Clarke K., Driver J. (2001). Reaching with a tool extends visual–tactile interactions into far space: evidence from cross-modal extinction, Neuropsychologia 39, 580–585.
Marzocchi N., Breveglieri R., Galletti C., Fattori P. (2008). Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur. J. Neurosci. 27, 775–789.
McDonald J. J., Teder-Sälejärvi W. A., Ward L. M. (2001). Multisensory integration and crossmodal attention effects in the human brain, Science 292(5523), 1791.
Melzack R. (1999). From the gate to the neuromatrix, Pain 82, S121–S126.
Menger R., Van der Stigchel S. & Dijkerman H. C. (in prep.). Multisensory interactions during obstacle avoidance.
Miller J. (1982). Divided attention: evidence for coactivation with redundant signals, Cogn. Psychol. 14, 247–279.
Miller J. (1986). Timecourse of coactivation in bimodal divided attention, Percept. Psychophys. 40, 331–343.
Moayedi M., Liang M., Sim A. L., Hu L., Haggard P., Iannetti G. D. (2015). Laser-evoked vertex potentials predict defensive motor actions, Cereb. Cortex 25(12), 4789–4798.
Moeller B., Zoppke H. & Frings C. (in press). What a car does to your perception: distance evaluations differ from within and outside of a car, Psychonom. Bull. Rev. DOI:10.3758/s13423-015-0954-9.
Moseley G. L., Gallace A., Spence C. (2012). Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’, Neurosci. Biobehav. Rev. 36, 34–46.
Mozolic J. L., Hugenschmidt C. E., Peiffer A. M., Laurienti P. J. (2008). Modality-specific selective attention attenuates multisensory integration, Exp. Brain Res. 184, 39–52.
Murray M., Spence C., Harris L. (2013). International Multisensory Research Forum 2012 meeting special issue, Multisens. Res. 26, 287–289.
Noel J. P., Grivaz P., Marmaroli P., Lissek H., Blanke O., Serino A. (2015a). Full body action remapping of peripersonal space: the case of walking, Neuropsychologia 70, 375–384.
Noel J. P., Pfeiffer C., Blanke O., Serino A. (2015b). Peripersonal space as the space of the bodily self, Cognition 144, 49–57.
Occelli V., Spence C., Zampini M. (2011). Audiotactile interactions in front and rear space, Neurosci. Biobehav. Rev. 35, 589–598.
Oosterhof N. N., Tipper S. P., Downing P. E. (2012). Viewpoint (in) dependence of action representations: an MVPA study, J. Cogn. Neurosci. 24, 975–989.
Pöppel E., Artin T. (1988). Mindworks: Time and Conscious Experience. Harcourt Brace Jovanovich, San Diego, CA, USA.
Previc F. H. (1998). The neuropsychology of 3-D space, Psychol. Bull. 124, 123–164.
Pugh E. N., Lamb T. D. (1993). Amplification and kinetics of the activation steps in phototransduction, Biochim. Biophys. Acta 1141, 111–149.
Rizzolatti G., Scandolara C., Matelli M., Gentilucci M. (1981). Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses, Behav. Brain Res. 2, 147–163.
Rizzolatti G., Fadiga L., Fogassi L., Gallese V. (1997). The space around us, Science 277(5323), 190–191.
Sambo C. F., Forster B. (2009). An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule, J. Cogn. Neurosci. 21, 1550–1559.
Sambo C. F., Forster B. (2011). When far is near: ERP correlates of crossmodal spatial interactions between tactile and mirror-reflected visual stimuli, Neurosci. Lett. 500, 10–15.
Sambo C. F., Iannetti G. D. (2013). Better safe than sorry? The safety margin surrounding the body is increased by anxiety, J. Neurosci. 33, 14225–14230.
Santangelo V., Ho C., Spence C. (2008). Capturing spatial attention with multisensory cues, Psychonom. Bull. Rev. 15, 398–403.
Schnapf J. L., Kraft T. W., Baylor D. A. (1987). Spectral sensitivity of human cone photoreceptors, Nature 325(6103), 439–441.
Schroeder C. E., Foxe J. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex, Brain Res.: Cogn. Brain Res. 14, 187–198.
Schroeder C. E., Foxe J. J. (2004). Multisensory convergence in early cortical processing, in: The Handbook of Multisensory Processes, Calvert G. A., Spence C., Stein B. E. (Eds), pp. 295–309. MIT Press, Cambridge, MA, USA.
Sereno M. I., Huang R. S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps, Nat. Neurosci. 9, 1337–1343.
Serino A., Annella L., Avenanti A. (2009). Motor properties of peripersonal space in humans, PLoS One 4, e6582. DOI:10.1371/journal.pone.0006582.
Serino A., Canzoneri E., Avenanti A. (2011). Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: an rTMS study, J. Cogn. Neurosci. 23, 2956–2967.
Serino A., Canzoneri E., Marzolla M., Di Pellegrino G., Magosso E. (2015). Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approach, Front. Behav. Neurosci. 9, 4. DOI:10.3389/fnbeh.2015.00004.
Shams L., Kamitani Y., Shimojo S. (2000). What you see is what you hear, Nature 408(6814), 788.
Shams L., Kamitani Y., Thompson S., Shimojo S. (2001). Sound alters visual evoked potentials in humans, Neuroreport 12, 3849–3852.
Shams L., Wozny D. R., Kim R., Seitz A. (2011). Influences of multisensory experience on subsequent unisensory processing, Front. Psychol. 2, 264. DOI:10.3389/fpsyg.2011.00264.
Soto-Faraco S., Navarra J., Alsius A. (2004). Assessing automaticity in audiovisual speech integration: evidence from the speeded classification task, Cognition 92, B13–B23.
Spence C. (2011). Assessing the consequences of tool-use for the representation of peripersonal space in humans, in: Tool Use and Causal Cognition, McCormack T., Hoerl C., Butterfill S. (Eds), pp. 220–247. Oxford University Press, Oxford, UK.
Spence C. (2012). Drive safely with neuroergonomics, Psychologist 25, 664–667.
Spence C. (2013). Just how important is spatial coincidence to multisensory integration? Evaluating the spatial rule, Ann. NY Acad. Sci. 1296, 31–49.
Spence C. (2015). Multisensory flavor perception, Cell 161, 24–35.
Spence C., Driver J. (2000). Attracting attention to the illusory location of a sound: reflexive crossmodal orienting and ventriloquism, Neuroreport 11, 2057–2061.
Spence C., Driver J. (Eds) (2004). Crossmodal Space and Crossmodal Attention. Oxford University Press, Oxford, UK.
Spence C., Ho C. (2008). Multisensory warning signals for event perception and safe driving, Theor. Issues Ergon. Sci. 9, 523–554.
Spence C., Santangelo V. (2009). Capturing spatial attention with multisensory cues: a review, Hear. Res. 258, 134–142.
Spence C., Squire S. B. (2003). Multisensory integration: maintaining the perception of synchrony, Curr. Biol. 13, R519–R521.
Spence C., Pavani F., Maravita A., Holmes N. (2004). Multisensory contributions to the 3-D representation of visuotactile peripersonal space in humans: evidence from the crossmodal congruency task, J. Physiol. Paris 98, 171–189.
Spence C., Pavani F., Maravita A., Holmes N. P. (2008). Multi-sensory interactions, in: Haptic Rendering: Foundations, Algorithms, and Applications, Lin M. C., Otaduy M. A. (Eds), pp. 21–52. AK Peters, Wellesley, MA, USA.
Spence C., Parise C., Chen Y.-C. (2011). The Colavita visual dominance effect, in: Frontiers in the Neural Bases of Multisensory Processes, Murray M. M., Wallace M. (Eds), pp. 523–550. CRC Press, Boca Raton, FL, USA.
Stein B. E. (Ed.) (2012). The New Handbook of Multisensory Processing. MIT Press, Cambridge, MA, USA.
Stein B. E., Meredith M. (1990). Multisensory integration, Ann. NY Acad. Sci. 608, 51–70.
Stein B. E., Meredith M. A. (1993). The Merging of the Senses. MIT Press, Cambridge, MA, USA.
Stein B. E., Burr D., Constantinidis C., Laurienti P. J., Meredith M. A., Perrault T. J., Ramachandran R., Röder B., Rowland B. A., Sathian K., Schroeder C. E., Shams L., Stanford T. R., Wallace M. T., Yu L., Lewkowicz D. J. (2010). Semantic confusion regarding the development of multisensory integration: a practical solution, Eur. J. Neurosci. 31, 1713–1720.
Stevenson R. A., Fister J. K., Barnett Z. P., Nidiffer A. R., Wallace M. T. (2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance, Exp. Brain Res. 219, 121–137.
Sugita Y., Suzuki Y. (2003). Audiovisual perception: implicit estimation of sound-arrival time, Nature 421(6926), 911.
Tabor A., Catley M. J., Gandevia S. C., Thacker M. A., Spence C., Moseley G. L. (2015). The close proximity of threat: altered distance perception in the anticipation of pain, Front. Psychol. 6, 626. DOI:10.3389/fpsyg.2015.00626.
Taffou M., Viaud-Delmon I. (2014). Cynophobic fear adaptively extends peri-personal space, Front. Psychiatry 5, 122. DOI:10.3389/fpsyt.2014.00122.
Talsma D. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mind, Front. Integr. Neurosci. 9, 19. DOI:10.3389/fnint.2015.00019.
Talsma D., Woldorff M. G. (2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity, J. Cogn. Neurosci. 17, 1098–1114.
Talsma D., Doty T. J., Woldorff M. G. (2007). Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb. Cortex 17, 679–690.
Talsma D., Senkowski D., Soto-Faraco S., Woldorff M. G. (2010). The multifaceted interplay between attention and multisensory integration, Trends Cogn. Sci. 14, 400–410.
Ten Brink A. F., Nijboer T. C. W., Van der Stoep N., Van der Stigchel S. (2014). The influence of vertically and horizontally aligned visual distractors on aurally guided saccadic eye movements, Exp. Brain Res. 232, 1357–1366.
Teneggi C., Canzoneri E., di Pellegrino G., Serino A. (2013). Social modulation of peripersonal space boundaries, Curr. Biol. 23, 406–411.
Tipper S. P., Howard L. A., Jackson S. R. (1997). Selective reaching to grasp: evidence for distractor interference effects, Vis. Cogn. 4, 1–38.
Vagnoni E., Lourenco S. F., Longo M. R. (2012). Threat modulates perception of looming visual stimuli, Curr. Biol. 22, R826–R827.
Van der Stigchel S., Meeter M., Theeuwes J. (2006). Eye movement trajectories and what they tell us, Neurosci. Biobehav. Rev. 30, 666–679.
Van der Stoep N. & Di Luca M. (in prep.). Audiovisual integration in near and far extrapersonal space.
Van der Stoep N., Visser-Meily J. M. A., Kappelle L. J., De Kort P. L. M., Huisman K. D., Eijsackers A. L., Kouwenhoven M., Van der Stigchel S., Nijboer T. C. W. (2013). Exploring near and far regions of space: distance specific visuospatial neglect after stroke, J. Clin. Exp. Neuropsychol. 35, 799–811.
Van der Stoep N., Nijboer T. C. W., Van der Stigchel S. (2014). Exogenous orienting of crossmodal attention in 3-D space: support for a depth-aware crossmodal attentional system, Psychonom. Bull. Rev. 21, 708–714.
Van der Stoep N., Nijboer T. C. W., Van der Stigchel S., Spence C. (2015a). Multisensory interactions in the depth-plane in front and rear space: a review, Neuropsychologia 70, 335–349.
Van der Stoep N., Van der Stigchel S., Nijboer T. C. W. (2015b). Exogenous spatial attention decreases audiovisual integration, Atten. Percept. Psychophys. 77, 464–482.
Van der Stoep N., Spence C., Nijboer T. C. W., Van der Stigchel S. (2015c). On the relative contributions of multisensory integration and crossmodal exogenous spatial attention to multisensory response enhancement, Acta Psychol. 162, 20–28.
Van der Stoep N., Van der Stigchel S., Nijboer T. C. W. & Van der Smagt M. J. (in press). Audiovisual integration in near and far space: effects of changes in distance and stimulus effectiveness, Exp. Brain Res. DOI:10.1007/s00221-015-4248-2.
Vroomen J., Keetels M. (2010). Perception of intersensory synchrony: a tutorial review, Atten. Percept. Psychophys. 72, 871–884.
Vroomen J., Bertelson P., De Gelder B. (2001). The ventriloquist effect does not depend on the direction of automatic visual attention, Percept. Psychophys. 63, 651–659.
Vuilleumier P., Valenza N., Mayer E., Reverdin A., Landis T. (1998). Near and far visual space in unilateral neglect, Ann. Neurol. 43, 406–410.
Wallace M. T., Stein B. E. (2007). Early experience determines how the senses will interact, J. Neurophysiol. 97, 921–926.
Wallace M. T., Perrault T. J., Hairston W. D., Stein B. E. (2004). Visual experience is necessary for the development of multisensory integration, J. Neurosci. 24, 9580–9584.
Yue Z., Jiang Y., Li Y., Wang P., Chen Q. (2015). Enhanced visual dominance in far space, Exp. Brain Res. 233, 2833–2843.
Zou H., Müller H. J., Shi Z. (2012). Non-spatial sounds regulate eye movements and enhance visual search, J. Vis. 12, 2. DOI:10.1167/12.5.2.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1691 | 271 | 23 |
Full Text Views | 315 | 65 | 1 |
PDF Views & Downloads | 187 | 50 | 2 |
The last quarter of a century has seen a dramatic rise of interest in the spatial constraints on multisensory integration. However, until recently, the majority of this research has investigated integration in the space directly in front of the observer. The space around us, however, extends in three spatial dimensions in the front and to the rear beyond such a limited area. The question to be addressed in this review concerns whether multisensory integration operates according to the same rules throughout the whole of three-dimensional space. The results reviewed here not only show that the space around us seems to be divided into distinct functional regions, but they also suggest that multisensory interactions are modulated by the region of space in which stimuli happen to be presented. We highlight a number of key limitations with previous research in this area, including: (1) The focus on only a very narrow region of two-dimensional space in front of the observer; (2) the use of static stimuli in most research; (3) the study of observers who themselves have been mostly static; and (4) the study of isolated observers. All of these factors may change the way in which the senses interact at any given distance, as can the emotional state/personality of the observer. In summarizing these salient issues, we hope to encourage researchers to consider these factors in their own research in order to gain a better understanding of the spatial constraints on multisensory integration as they affect us in our everyday life.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1691 | 271 | 23 |
Full Text Views | 315 | 65 | 1 |
PDF Views & Downloads | 187 | 50 | 2 |