Multisensory Integration in Self Motion Perception

In: Multisensory Research
View More View Less
  • 1 Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
  • | 2 Center for Neuroprosthetics, Laboratory of Cognitive Neuroscience, Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland
  • | 3 Department of Neurophysics, University of Marburg, Marburg, Germany
  • | 4 German Center for Vertigo, University Hospital of Munich, LMU, Munich, Germany
  • | 5 Department of Psychology, Royal Holloway, University of London, UK
  • | 6 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Self motion perception involves the integration of visual, vestibular, somatosensory and motor signals. This article reviews the findings from single unit electrophysiology, functional and structural magnetic resonance imaging and psychophysics to present an update on how the human and non-human primate brain integrates multisensory information to estimate one’s position and motion in space. The results indicate that there is a network of regions in the non-human primate and human brain that processes self motion cues from the different sense modalities.

  • Andersen R. A., Snyder L. H., Bradley D. C., Xing J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements, Annu. Rev. Neurosci. 20, 303330.

    • Search Google Scholar
    • Export Citation
  • Angelaki D. E., Gu Y., DeAngelis G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex, J. Physiol. 589, 825833.

    • Search Google Scholar
    • Export Citation
  • Avillac M., Deneve S., Olivier E., Pouget A., Duhamel J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex, Nat. Neurosci. 8, 941949.

    • Search Google Scholar
    • Export Citation
  • Avillac M., Ben Hamed S., Duhamel J. R. (2007). Multisensory integration in the ventral intraparietal area of the macaque monkey, J. Neurosci. 27, 19221932.

    • Search Google Scholar
    • Export Citation
  • Barany R. (1907). Physiologie und Pathologie des Bogengangapparates beim Menschen. Franz Deuticke Verlag, Leipzig, Germany.

  • Barlow H. B. (1990). A theory about the functional role and synaptic mechanism of visual after-effects, in: Vision: Coding and Efficiency, Blakemore C. B. (Ed.), pp.  363375. Cambridge University Press, Cambridge, UK.

    • Search Google Scholar
    • Export Citation
  • Barlow H. B., Hill R. M. (1963). Selective sensitivity to direction of movement in ganglion cells of the rabbit retina, Science 139(3553), 412414.

    • Search Google Scholar
    • Export Citation
  • Beer A. L., Watanabe T., Ni R., Sasaki Y., Andersen G. J. (2009). 3D surface perception from motion involves a temporal-parietal network, Eur. J. Neurosci. 30, 703713.

    • Search Google Scholar
    • Export Citation
  • Beintema J. A., Van den Berg A. V. (1998). Heading detection using motion templates and eye velocity gain fields, Vis. Res. 38, 21552179.

    • Search Google Scholar
    • Export Citation
  • Beintema J. A., Van den Berg A. V., Lappe M. (2004). Circular receptive field structures for flow analysis and heading detection, in: The Structure of Receptive Fields for Flow Analysis and Heading Detection, Vaina L. M., Beardsley S. A., Rushton S. (Eds), pp.  223248. Kluwer Academic Publishers, Norwell, MA, USA.

    • Search Google Scholar
    • Export Citation
  • Ben Hamed S., Duhamel J. R., Bremmer F., Graf W. (2002). Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze, Cereb. Cortex 12, 234245.

    • Search Google Scholar
    • Export Citation
  • Benson A. J., Kass J. R., Vogel H. (1986). European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation, Exp. Brain Res. 64, 264271.

    • Search Google Scholar
    • Export Citation
  • Biagi L., Crespi S. A., Tosetti M., Morrone M. C. (2015). BOLD response selective to flow-motion in very young infants, PLoS Biol. 13, e1002260. DOI:10.1371/journal.pbio.1002260.

    • Search Google Scholar
    • Export Citation
  • Billington J., Smith A. T. (2015). Neural mechanisms for discounting head-roll-induced retinal motion, J. Neurosci. 35, 48514856.

  • Bottini G., Paulesu E., Gandola M., Loffredo S., Scarpa P., Sterzi R., Santilli I., Defanti C., Scialfa G., Fazio F. (2005). Left caloric vestibular stimulation ameliorates right hemianesthesia, Neurology 65, 12781283.

    • Search Google Scholar
    • Export Citation
  • Bottini G., Gandola M., Sedda A., Ferrè E. R. (2013). Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus, Front. Integr. Neurosci. 7, 66. DOI:10.3389/fnint.2013.00066.

    • Search Google Scholar
    • Export Citation
  • Bradley D. C., Maxwell M., Andersen R. A., Banks M. S., Shenoy K. V. (1996). Mechanisms of heading perception in primate visual cortex, Science 273, 15441547.

    • Search Google Scholar
    • Export Citation
  • Brandt T., Dichgans J., Buchle W. (1974). Motion habituation: inverted self-motion perception and optokinetic after-nystagmus, Exp. Brain Res. 21, 337352.

    • Search Google Scholar
    • Export Citation
  • Brandt T., Bartenstein P., Janek A., Dieterich M. (1998). Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex, Brain 121, 17491758.

    • Search Google Scholar
    • Export Citation
  • Bremmer F. (2011). Multisensory space: from eye-movements to self-motion, J. Physiol. 589, 815823.

  • Bremmer F., Kubischik M., Pekel M., Lappe M., Hoffmann K. P. (1999). Linear vestibular self-motion signals in monkey medial superior temporal area, Ann. N. Y. Acad. Sci. 871, 272281.

    • Search Google Scholar
    • Export Citation
  • Bremmer F., Schlack A., Shah N. J., Zafiris O., Kubischik M., Hoffmann K., Zilles K., Fink G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys, Neuron 29, 287296.

    • Search Google Scholar
    • Export Citation
  • Bremmer F., Duhamel J.-R., Ben Hamed S., Graf W. (2002a). Heading encoding in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 15541568.

    • Search Google Scholar
    • Export Citation
  • Bremmer F., Klam F., Duhamel J.-R., Ben Hamed S., Graf W. (2002b). Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 15691586.

    • Search Google Scholar
    • Export Citation
  • Bremmer F., Kubischik M., Hoffmann K. P., Krekelberg B. (2009). Neural dynamics of saccadic suppression, J. Neurosci. 29, 1237412383.

  • Bremmer F., Kubischik M., Pekel M., Hoffmann K. P., Lappe M. (2010). Visual selectivity for heading in monkey area MST, Exp. Brain Res. 200, 5160.

    • Search Google Scholar
    • Export Citation
  • Britten K. H. (2008). Mechanisms of self-motion perception, Annu. Rev. Neurosci. 31, 389410.

  • Butler J. S., Smith S. T., Campos J. L., Bülthoff H. H. (2010). Bayesian integration of visual and vestibular signals for heading, J. Vis. 10, 23. DOI:10.1167/10.11.23.

    • Search Google Scholar
    • Export Citation
  • Cardin V., Smith A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation, Cereb. Cortex 20, 19641973.

    • Search Google Scholar
    • Export Citation
  • Chen A., DeAngelis G. C., Angelaki D. E. (2011). Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex, J. Neurosci. 31, 1203612052.

    • Search Google Scholar
    • Export Citation
  • Chen A., Deangelis G. C., Angelaki D. E. (2013). Functional specializations of the ventral intraparietal area for multisensory heading discrimination, J. Neurosci. 33, 35673581.

    • Search Google Scholar
    • Export Citation
  • Chen X., DeAngelis G. C., Angelaki D. E. (2014). Eye-centered visual receptive fields in the ventral intraparietal area, J. Neurophysiol. 112, 353361.

    • Search Google Scholar
    • Export Citation
  • Claeys K. G., Lindsey D. T., de Schutter E., Orban G. A. (2003). A higher order motion region in human inferior parietal lobule: evidence from fMRI, Neuron 40, 631642.

    • Search Google Scholar
    • Export Citation
  • Cohen B., Henn V., Raphan T., Dennett D. (1981). Velocity storage, nystagmus, and visual–vestibular interactions in humans, Ann. N. Y. Acad. Sci. 374, 421433.

    • Search Google Scholar
    • Export Citation
  • Coniglio A. J., Crane B. T. (2014). Human yaw rotation aftereffects with brief duration rotations are inconsistent with velocity storage, J. Assoc. Res. Otolaryngol. 15, 305317.

    • Search Google Scholar
    • Export Citation
  • Crane B. T. (2012). Fore–aft translation aftereffects, Exp. Brain Res. 219, 477487.

  • Crane B. T. (2013). Limited interaction between translation and visual motion aftereffects in humans, Exp. Brain Res. 224, 165178.

  • Cuturi L. F., MacNeilage P. R. (2013). Systematic biases in human heading estimation, PLoS ONE 8, e56862. DOI:10.1371/journal.pone.0056862.

    • Search Google Scholar
    • Export Citation
  • Cuturi L. F., MacNeilage P. R. (2014). Optic flow induces nonvisual self-motion aftereffects, Curr. Biol. 24, 28172821.

  • De Winkel K. N., Katliar M., Bulthoff H. H. (2015). Forced fusion in multisensory heading estimation, PLoS ONE 10, e0127104. DOI:10.1371/journal.pone.0127104.

    • Search Google Scholar
    • Export Citation
  • Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dieterich M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET, Hum. Brain Mapp. 16, 92103.

    • Search Google Scholar
    • Export Citation
  • Dieterich M., Brandt T. (2008). Functional brain imaging of peripheral and central vestibular disorders, Brain 131, 25382552.

  • Dieterich M., Brandt T. (2015). The bilateral central vestibular system: its pathways, functions, and disorders, Ann. N. Y. Acad. Sci. 1343, 1026.

    • Search Google Scholar
    • Export Citation
  • Dieterich M., Bucher S. F., Seelos K. C., Brandt T. (1998). Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study, Brain 121, 14791495.

    • Search Google Scholar
    • Export Citation
  • Dieterich M., Bense S., Lutz S., Drzezga A., Stephan T., Bartenstein P., Brandt T. (2003). Dominance for vestibular cortical function in the non-dominant hemisphere, Cereb. Cortex 13, 9941007.

    • Search Google Scholar
    • Export Citation
  • Duffy C. J. (1998). MST neurons respond to optic flow and translational movement, J. Neurophysiol. 80, 18161827.

  • Duffy C. J. (2000). Optic flow analysis for self-movement perception, Int. Rev. Neurobiol. 44, 199218.

  • Duffy C. J., Wurtz R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli, J. Neurophysiol. 65, 13291345.

    • Search Google Scholar
    • Export Citation
  • Duffy C. J., Wurtz R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli, J. Neurophysiol. 65, 13461359.

    • Search Google Scholar
    • Export Citation
  • Duhamel J. R., Colby C. L., Goldberg M. E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties, J. Neurophysiol. 79, 126136.

    • Search Google Scholar
    • Export Citation
  • Dukelow S. P., DeSouza J. F., Culham J. C., Van den Berg A. V., Menon R. S., Vilis T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements, J. Neurophysiol. 86, 19912000.

    • Search Google Scholar
    • Export Citation
  • Eickhoff S. B., Weiss P. H., Amunts K., Fink G. R., Zilles K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping, Hum. Brain Mapp. 27, 611621.

    • Search Google Scholar
    • Export Citation
  • Erickson R. G., Thier P. (1991). A neuronal correlate of spatial stability during periods of self-induced visual motion, Exp. Brain Res. 86, 608616.

    • Search Google Scholar
    • Export Citation
  • Fasold O., von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging, NeuroImage 17, 13841393.

    • Search Google Scholar
    • Export Citation
  • Fattori P., Pitzalis S., Galletti C. (2009). The cortical visual area V6 in macaque and human brains, J. Physiol. Paris 103, 8897.

  • Ferrè E. R., Sedda A., Gandola M., Bottini G. (2011). How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study, Exp. Brain Res. 208, 2938.

    • Search Google Scholar
    • Export Citation
  • Ferrè E. R., Day B. L., Bottini G., Haggard P. (2013a). How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation, Neurosci. Lett. 550, 3540.

    • Search Google Scholar
    • Export Citation
  • Ferrè E. R., Bottini G., Iannetti G. D., Haggard P. (2013b). The balance of feelings: vestibular modulation of bodily sensations, Cortex 49, 748758.

    • Search Google Scholar
    • Export Citation
  • Ferrè E. R., Kaliuzhna M., Herbelin B., Haggard P., Blanke O. (2014). Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection, PLoS ONE 9, e86379. DOI:10.1371/journal.pone.0086379.

    • Search Google Scholar
    • Export Citation
  • Fetsch C. R., Turner A. H., DeAngelis G. C., Angelaki D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception, J. Neurosci. 29, 1560115612.

    • Search Google Scholar
    • Export Citation
  • Fetsch C. R., DeAngelis G. C., Angelaki D. E. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons, Nat. Rev. Neurosci. 14, 429442.

    • Search Google Scholar
    • Export Citation
  • Frank S. M., Greenlee M. W. (2014). An MRI-compatible caloric stimulation device for the investigation of human vestibular cortex, J. Neurosci. Meth. 235, 208218.

    • Search Google Scholar
    • Export Citation
  • Frank S. M., Baumann O., Mattingley J. B., Greenlee M. W. (2014). Vestibular and visual responses in human posterior insular cortex, J. Neurophysiol. 112, 24812491.

    • Search Google Scholar
    • Export Citation
  • Frank S. M., Wirth A. M., Greenlee M. W. (subm.). Visual–vestibular processing in the human Sylvian fissure.

  • Galletti C., Fattori P. (2003). Neuronal mechanisms for detection of motion in the field of view, Neuropsychologia 41, 17171727.

  • Galletti C., Squatrito S., Battaglini P. P., Grazia Maioli M. (1984). ‘Real-motion’ cells in the primary visual cortex of macaque monkeys, Brain Res. 301, 95110.

    • Search Google Scholar
    • Export Citation
  • Galletti C., Battaglini P. P., Aicardi G. (1988). ‘Real-motion’ cells in visual area V2 of behaving macaque monkeys, Exp. Brain Res. 69, 279288.

    • Search Google Scholar
    • Export Citation
  • Galletti C., Battaglini P. P., Fattori P. (1990). ‘Real-motion’ cells in area V3A of macaque visual cortex, Exp. Brain Res. 82, 6776.

    • Search Google Scholar
    • Export Citation
  • Gamberini M., Fattori P., Galletti C. (2015). The medial parietal occipital areas in the macaque monkey, Vis. Neurosci. 32, E013. DOI:10.1017/S0952523815000103.

    • Search Google Scholar
    • Export Citation
  • Gibson J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Boston, MA, USA.

  • Grabherr L., Nicoucar K., Mast F. W., Merfeld D. M. (2008). Vestibular thresholds for yaw rotation about an Earth-vertical axis as a function of frequency, Exp. Brain Res. 186, 677681.

    • Search Google Scholar
    • Export Citation
  • Grantham D. W., Wightman F. L. (1979). Auditory motion aftereffects, Percept. Psychophys. 26, 403408.

  • Greenlee M. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies, Int. Rev. Neurobiol. 44, 269292.

    • Search Google Scholar
    • Export Citation
  • Gu Y., Watkins P. V., Angelaki D. E., DeAngelis G. C. (2006). Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area, J. Neurosci. 26, 7385.

    • Search Google Scholar
    • Export Citation
  • Gu Y., DeAngelis G. C., Angelaki D. E. (2007). A functional link between area MSTd and heading perception based on vestibular signals, Nat. Neurosci. 10, 10381047.

    • Search Google Scholar
    • Export Citation
  • Gu Y., Angelaki D. E., DeAngelis G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd, Nat. Neurosci. 11, 12011210.

    • Search Google Scholar
    • Export Citation
  • Gu Y., Fetsch C. R., Adeyemo B., DeAngelis G. C., Angelaki D. E. (2010). Decoding of MSTd population activity accounts for variations in the precision of heading perception, Neuron 66, 596609.

    • Search Google Scholar
    • Export Citation
  • Gu Y., DeAngelis G. C., Angelaki D. E. (2012). Causal links between dorsal medial superior temporal area neurons and multisensory heading perception, J. Neurosci. 32, 22992313.

    • Search Google Scholar
    • Export Citation
  • Guldin W. O., Grüsser O. J. (1998). Is there a vestibular cortex? Trends Neurosci. 21, 254259.

  • Hitier M., Besnard S., Smith P. F. (2014). Vestibular pathways involved in cognition, Front. Integr. Neurosci. 8, 59. DOI:10.3389/fnint.2014.00059.

    • Search Google Scholar
    • Export Citation
  • Holten V., Van der Smagt M. J., Donker S. F., Verstraten F. A. (2014). Illusory motion of the motion aftereffect induces postural sway, Psychol. Sci. 25, 18311834.

    • Search Google Scholar
    • Export Citation
  • Huang R.-S., Chen C.-F., Sereno M. I. (2015). Neural substrates underlying the passive observation and active control of translational egomotion, J. Neurosci. 35, 42584267.

    • Search Google Scholar
    • Export Citation
  • Huk A. C., Dougherty R. F., Heeger D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST, J. Neurosci. 22, 71957205.

    • Search Google Scholar
    • Export Citation
  • Ionta S., Heydrich L., Lenggenhager B., Mouthon M., Fornari E., Chapuis D., Gassert R., Blanke O. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective, Neuron 70, 363374.

    • Search Google Scholar
    • Export Citation
  • Kaliuzhna M., Prsa M., Gale S., Lee S. J., Blanke O. (2015). Learning to integrate contradictory multisensory self-motion cue pairings, J. Vis. 15, 15.1.10. DOI:10.1167/15.1.10.

    • Search Google Scholar
    • Export Citation
  • Kaminiarz A., Schlack A., Hoffmann K. P., Lappe M., Bremmer F. (2014). Visual selectivity for heading in the macaque ventral intraparietal area, J. Neurophysiol. 112, 24702480.

    • Search Google Scholar
    • Export Citation
  • Kitagawa N., Ichihara S. (2002). Hearing visual motion in depth, Nature 416(6877), 172174.

  • Kleinschmidt A., Thilo K. V., Büchel C., Gresty M. A., Bronstein A. M., Frackowiak R. S. J. (2002). Neural correlates of visual-motion perception as object- or self-motion, NeuroImage 16, 873882.

    • Search Google Scholar
    • Export Citation
  • Koenderink J. J. (1986). Optic flow, Vis. Res. 26, 161179.

  • Kommerell G., Thiele H. (1970). Der optokinetische Kurzreiznystagmus [Optokinetic short-stimulation nystagmus], Graefes Arch. Klin. Exp. Ophthalmol. 179(3), 220234.

    • Search Google Scholar
    • Export Citation
  • Konkle T., Moore C. I. (2009). What can crossmodal aftereffects reveal about neural representation and dynamics? Commun. Integr. Biol. 2, 479481.

    • Search Google Scholar
    • Export Citation
  • Konkle T., Wang Q., Hayward V., Moore C. I. (2009). Motion aftereffects transfer between touch and vision, Curr. Biol. 19, 745750.

  • Kontsevich L. L., Tyler C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold, Vis. Res. 39, 27292737.

  • Körding K. P., Beierholm U., Ma W. J., Quartz S., Tenenbaum J. B., Shams L. (2007). Causal inference in multisensory perception, PLoS ONE 2, e943. DOI:10.1371/journal.pone.0000943.

    • Search Google Scholar
    • Export Citation
  • Lackner J. R., DiZio P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation, Annu. Rev. Psychol. 56, 115147.

    • Search Google Scholar
    • Export Citation
  • Lappe M., Rauschecker J. P. (1993). A neural network for the processing of optic flow from ego-motion in man and higher mammals, Neural Comp. 5, 374391.

    • Search Google Scholar
    • Export Citation
  • Lappe M., Rauschecker J. P. (1994). Heading detection from optic flow, Nature 369(6483), 712713.

  • Lappe M., Bremmer F., Pekel M., Thiele A., Hoffmann K. P. (1996). Optic flow processing in monkey STS: a theoretical and experimental approach, J. Neurosci. 16, 62656285.

    • Search Google Scholar
    • Export Citation
  • Lappe M., Pekel M., Hoffmann K.-P. (1998). Optokinetic eye movements elicited by radial optic flow in the macaque monkey, J. Neurophysiol. 79, 14611480.

    • Search Google Scholar
    • Export Citation
  • Lappe M., Bremmer F., Van den Berg A. V. (1999). Perception of self-motion from visual flow, Trends Cogn. Sci. 3, 329336.

  • Lobel E., Kleine J., Le Bihan D., Leroy-Willig A., Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation, J. Neurophysiol. 80, 26992709.

    • Search Google Scholar
    • Export Citation
  • Lopez C., Blanke O. (2011). The thalamocortical vestibular system in animals and humans, Brain Res. Rev. 67, 119146.

  • Lopez C., Blanke O., Mast F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis, Neuroscience 212, 159179.

    • Search Google Scholar
    • Export Citation
  • MacNeilage P. R., Banks M. S., Berger D. R., Bülthoff H. H. (2007). A Bayesian model of the disambiguation of gravitoinertial force by visual cues, Exp. Brain Res. 179, 263290.

    • Search Google Scholar
    • Export Citation
  • MacNeilage P. R., Banks M. S., DeAngelis G. C., Angelaki D. E. (2010). Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates, J. Neurosci. 30, 90849094.

    • Search Google Scholar
    • Export Citation
  • Mather G., Pavan A., Campana G., Casco C. (2008). The motion aftereffect reloaded, Trends Cogn. Sci. 12, 481487.

  • Mergner T., Rosemeier T. (1998). Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions — a conceptual model, Brain Res. Rev. 28, 118135.

    • Search Google Scholar
    • Export Citation
  • Mergner T., Nardi G., Becker W., Deecke L. (1983). The role of canal-neck interaction for the perception of horizontal trunk and head rotation, Exp. Brain Res. 49, 198208.

    • Search Google Scholar
    • Export Citation
  • Morgan M. L., DeAngelis G. C., Angelaki D. E. (2008). Multisensory integration in macaque visual cortex depends on cue reliability, Neuron 59, 662673.

    • Search Google Scholar
    • Export Citation
  • Morris A. P., Kubischik M., Hoffmann K.-P., Krekelberg B., Bremmer F. (2012). Dynamics of eye-position signals in the dorsal visual system, Curr. Biol. 22, 173179.

    • Search Google Scholar
    • Export Citation
  • Morrone M. C., Tosetti M., Montanaro D., Fiorentini A., Cioni G., Burr D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI, Nat. Neurosci. 3, 13221328.

    • Search Google Scholar
    • Export Citation
  • Ni J., Tatalovic M., Straumann D., Olasagasti I. (2013). Gaze direction affects linear self-motion heading discrimination in humans, Eur. J. Neurosci. 38, 32483260.

    • Search Google Scholar
    • Export Citation
  • Orban G. A., Fize D., Peuskens H., Denys K., Nelissen K., Sunaert S., Todd J., Vanduffel W. (2003). Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI, Neuropsychologia 41, 17571768.

    • Search Google Scholar
    • Export Citation
  • Page W. K., Duffy C. J. (2003). Heading representation in MST: sensory interactions and population encoding, J. Neurophysiol. 89, 19942013.

    • Search Google Scholar
    • Export Citation
  • Perrone J. A., Stone L. S. (1994). A model of self-motion estimation within primate extrastriate visual cortex, Vis. Res. 34, 29172938.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer C., Lopez C., Schmutz V., Duenas J. A., Martuzzi R., Blanke O. (2013). Multisensory origin of the subjective first-person perspective: visual, tactile, and vestibular mechanisms, PLoS ONE 8, e61751. DOI:10.1371/journal.pone.0061751.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer C., Schmutz V., Blanke O. (2014). Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective, Exp. Brain Res. 232, 40214033.

    • Search Google Scholar
    • Export Citation
  • Pfeiffer C., van Elk M., Bernasconi F., Blanke O. (2016). Distinct vestibular effects on early and late somatosensory cortical processing in humans, NeuroImage 125, 208219.

    • Search Google Scholar
    • Export Citation
  • Pitzalis S., Sereno M. I., Committeri G., Fattori P., Galati G., Tosoni A., Galletti C. (2013). The human homologue of macaque area V6A, NeuroImage 82, 517530.

    • Search Google Scholar
    • Export Citation
  • Pitzalis S., Fattori P., Galletti C. (2015). The human cortical areas V6 and V6A, Vis. Neurosci. 32, E007. DOI:10.1017/S0952523815000048.

  • Priesol A. J., Valko Y., Merfeld D. M., Lewis R. F. (2014). Motion perception in patients with idiopathic bilateral vestibular hypofunction, Otolaryngol. Head Neck Surg. 150, 10401042.

    • Search Google Scholar
    • Export Citation
  • Probst T., Straube A., Bles W. (1985). Differential effects of ambivalent visual–vestibular–somatosensory stimulation on the perception of self-motion, Behav. Brain Res. 16, 7179.

    • Search Google Scholar
    • Export Citation
  • Prsa M., Gale S., Blanke O. (2012). Self-motion leads to mandatory cue fusion across sensory modalities, J. Neurophysiol. 108, 22822291.

  • Riecke B. E., Jordan J. D. (2015). Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection), Front. Psychol. 6, 713. DOI:10.3389/fpsyg.2015.00713.

    • Search Google Scholar
    • Export Citation
  • Roach N. W., Heron J., McGraw P. V. (2006). Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration, Proc. R. Soc. B Biol. Sci. 273, 21592168.

    • Search Google Scholar
    • Export Citation
  • Schlack A., Hoffmann K. P., Bremmer F. (2002). Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 18771886.

    • Search Google Scholar
    • Export Citation
  • Seemungal B. M. (2014). The cognitive neurology of the vestibular system, Curr. Opin. Neurol. 27, 125132.

  • Seno T., Ito H., Sunaga S. (2010). Vection aftereffects from expanding/contracting stimuli, Seeing Perceiving 23, 273294.

  • Sereno M. I., Huang R. S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps, Nat. Neurosci. 9, 13371343.

    • Search Google Scholar
    • Export Citation
  • Sereno M. I., Huang R. S. (2014). Multisensory maps in parietal cortex, Curr. Opin. Neurobiol. 24, 3946.

  • Shenoy K. V., Bradley D. C., Andersen R. A. (1999). Influence of gaze rotation on the visual response of primate MSTd neurons, J. Neurophysiol. 81, 27642786.

    • Search Google Scholar
    • Export Citation
  • Shu Z. J., Swindale N. V., Cynader M. S. (1993). Spectral motion produces an auditory after-effect, Nature 364(6439), 721723.

  • Smith A. T., Wall M. B., Thilo K. V. (2012). Vestibular inputs to human motion-sensitive visual cortex, Cereb. Cortex 22, 10681077.

  • Sommer M. A., Wurtz R. H. (2008). Brain circuits for the internal monitoring of movements, Annu. Rev. Neurosci. 31, 317338.

  • Sperry R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion, J. Comp. Physiol. Psychol. 43, 482489.

    • Search Google Scholar
    • Export Citation
  • Stephan T., Deutschländer A., Nolte A., Schneider E., Wiesmann M., Brandt T., Dieterich M. (2005). Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies, NeuroImage 26, 721732.

    • Search Google Scholar
    • Export Citation
  • Sunaert S., Van Hecke P., Marchal G., Orban G. A. (1999). Motion-responsive regions of the human brain, Exp. Brain Res. 127, 355370.

  • Sutherland N. S. (1961). Figural aftereffects and apparent size, Q. J. Exp. Psychol. 13, 222228.

  • Takahashi K., Gu Y., May P. J., Newlands S. D., DeAngelis G. C., Angelaki D. E. (2007). Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity, J. Neurosci. 27, 97429768.

    • Search Google Scholar
    • Export Citation
  • Uesaki M., Ashida H. (2015). Optic-flow selective cortical sensory regions associated with self-reported states of vection, Front. Psychol. 6, 775. DOI:10.3389/fpsyg.2015.00775.

    • Search Google Scholar
    • Export Citation
  • Upadhyay U. D., Page W. K., Duffy C. J. (2000). MST responses to pursuit across optic flow with motion parallax, J. Neurophysiol. 84, 818826.

    • Search Google Scholar
    • Export Citation
  • Valko Y., Lewis R. F., Priesol A. J., Merfeld D. M. (2012). Vestibular labyrinth contributions to human whole-body motion discrimination, J. Neurosci. 32, 1353713542.

    • Search Google Scholar
    • Export Citation
  • Vallar G., Sterzi R., Bottini G., Cappa S., Rusconi M. L. (1990). Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon, Cortex 26, 123131.

    • Search Google Scholar
    • Export Citation
  • Van den Berg A. V. (1993). Perception of heading, Nature 365(6446), 497498.

  • von Holst E., Mittelstaedt H. (1950). Das Reafferenzprinzip, Naturwissenschaften 37, 464476.

  • Wall M. B., Smith A. T. (2008). The representation of egomotion in the human brain, Curr. Biol. 18, 191194.

  • Wallace M. T., Roberson G., Hairston W. D., Stein B. E., Vaughan J. W., Schirillo J. A. (2004). Unifying multisensory signals across time and space, Exp. Brain Res. 158, 252258.

    • Search Google Scholar
    • Export Citation
  • Warren W. H., Hannon D. J. (1988). Direction of self-motion is perceived from optical flow, Nature 336(6195), 162163.

  • Warren W. H., Hannon D. J. (1990). Eye movements and optical flow, J. Opt. Soc. Am. A 7, 160169.

  • Watanabe J., Hayashi S., Kajimoto H., Tachi S., Nishida S. (2007). Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors, Exp. Brain Res. 180, 577582.

    • Search Google Scholar
    • Export Citation
  • Wexler M., Panerai F., Lamouret I., Droulez J. (2001). Self-motion and the perception of stationary objects, Nature 409(6816), 8588.

  • Yu C. P., Page W. K., Gaborski R., Duffy C. J. (2010). Receptive field dynamics underlying MST neuronal optic flow selectivity, J. Neurophysiol. 103, 27942807.

    • Search Google Scholar
    • Export Citation
  • Zhang T., Britten K. H. (2011). Parietal area VIP causally influences heading perception during pursuit eye movements, J. Neurosci. 31, 25692575.

    • Search Google Scholar
    • Export Citation
  • Zhang T., Heuer H. W., Britten K. H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates, Neuron 42, 9931001.

    • Search Google Scholar
    • Export Citation
  • zu Eulenburg P., Baumgärtner U., Treede R.-D., Dieterich M. (2013). Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations, NeuroImage 83, 7586.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 1044 383 36
Full Text Views 363 23 7
PDF Views & Downloads 80 19 7