Self motion perception involves the integration of visual, vestibular, somatosensory and motor signals. This article reviews the findings from single unit electrophysiology, functional and structural magnetic resonance imaging and psychophysics to present an update on how the human and non-human primate brain integrates multisensory information to estimate one’s position and motion in space. The results indicate that there is a network of regions in the non-human primate and human brain that processes self motion cues from the different sense modalities.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Andersen R. A., Snyder L. H., Bradley D. C., Xing J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements, Annu. Rev. Neurosci. 20, 303–330.
Angelaki D. E., Gu Y., DeAngelis G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex, J. Physiol. 589, 825–833.
Avillac M., Deneve S., Olivier E., Pouget A., Duhamel J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex, Nat. Neurosci. 8, 941–949.
Avillac M., Ben Hamed S., Duhamel J. R. (2007). Multisensory integration in the ventral intraparietal area of the macaque monkey, J. Neurosci. 27, 1922–1932.
Barany R. (1907). Physiologie und Pathologie des Bogengangapparates beim Menschen. Franz Deuticke Verlag, Leipzig, Germany.
Barlow H. B. (1990). A theory about the functional role and synaptic mechanism of visual after-effects, in: Vision: Coding and Efficiency, Blakemore C. B. (Ed.), pp. 363–375. Cambridge University Press, Cambridge, UK.
Barlow H. B., Hill R. M. (1963). Selective sensitivity to direction of movement in ganglion cells of the rabbit retina, Science 139(3553), 412–414.
Beer A. L., Watanabe T., Ni R., Sasaki Y., Andersen G. J. (2009). 3D surface perception from motion involves a temporal-parietal network, Eur. J. Neurosci. 30, 703–713.
Beintema J. A., Van den Berg A. V. (1998). Heading detection using motion templates and eye velocity gain fields, Vis. Res. 38, 2155–2179.
Beintema J. A., Van den Berg A. V., Lappe M. (2004). Circular receptive field structures for flow analysis and heading detection, in: The Structure of Receptive Fields for Flow Analysis and Heading Detection, Vaina L. M., Beardsley S. A., Rushton S. (Eds), pp. 223–248. Kluwer Academic Publishers, Norwell, MA, USA.
Ben Hamed S., Duhamel J. R., Bremmer F., Graf W. (2002). Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze, Cereb. Cortex 12, 234–245.
Benson A. J., Kass J. R., Vogel H. (1986). European vestibular experiments on the Spacelab-1 mission: 4. Thresholds of perception of whole-body linear oscillation, Exp. Brain Res. 64, 264–271.
Biagi L., Crespi S. A., Tosetti M., Morrone M. C. (2015). BOLD response selective to flow-motion in very young infants, PLoS Biol. 13, e1002260. DOI:10.1371/journal.pbio.1002260.
Billington J., Smith A. T. (2015). Neural mechanisms for discounting head-roll-induced retinal motion, J. Neurosci. 35, 4851–4856.
Bottini G., Paulesu E., Gandola M., Loffredo S., Scarpa P., Sterzi R., Santilli I., Defanti C., Scialfa G., Fazio F. (2005). Left caloric vestibular stimulation ameliorates right hemianesthesia, Neurology 65, 1278–1283.
Bottini G., Gandola M., Sedda A., Ferrè E. R. (2013). Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus, Front. Integr. Neurosci. 7, 66. DOI:10.3389/fnint.2013.00066.
Bradley D. C., Maxwell M., Andersen R. A., Banks M. S., Shenoy K. V. (1996). Mechanisms of heading perception in primate visual cortex, Science 273, 1544–1547.
Brandt T., Dichgans J., Buchle W. (1974). Motion habituation: inverted self-motion perception and optokinetic after-nystagmus, Exp. Brain Res. 21, 337–352.
Brandt T., Bartenstein P., Janek A., Dieterich M. (1998). Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex, Brain 121, 1749–1758.
Bremmer F. (2011). Multisensory space: from eye-movements to self-motion, J. Physiol. 589, 815–823.
Bremmer F., Kubischik M., Pekel M., Lappe M., Hoffmann K. P. (1999). Linear vestibular self-motion signals in monkey medial superior temporal area, Ann. N. Y. Acad. Sci. 871, 272–281.
Bremmer F., Schlack A., Shah N. J., Zafiris O., Kubischik M., Hoffmann K., Zilles K., Fink G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys, Neuron 29, 287–296.
Bremmer F., Duhamel J.-R., Ben Hamed S., Graf W. (2002a). Heading encoding in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 1554–1568.
Bremmer F., Klam F., Duhamel J.-R., Ben Hamed S., Graf W. (2002b). Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 1569–1586.
Bremmer F., Kubischik M., Hoffmann K. P., Krekelberg B. (2009). Neural dynamics of saccadic suppression, J. Neurosci. 29, 12374–12383.
Bremmer F., Kubischik M., Pekel M., Hoffmann K. P., Lappe M. (2010). Visual selectivity for heading in monkey area MST, Exp. Brain Res. 200, 51–60.
Britten K. H. (2008). Mechanisms of self-motion perception, Annu. Rev. Neurosci. 31, 389–410.
Butler J. S., Smith S. T., Campos J. L., Bülthoff H. H. (2010). Bayesian integration of visual and vestibular signals for heading, J. Vis. 10, 23. DOI:10.1167/10.11.23.
Cardin V., Smith A. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation, Cereb. Cortex 20, 1964–1973.
Chen A., DeAngelis G. C., Angelaki D. E. (2011). Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex, J. Neurosci. 31, 12036–12052.
Chen A., Deangelis G. C., Angelaki D. E. (2013). Functional specializations of the ventral intraparietal area for multisensory heading discrimination, J. Neurosci. 33, 3567–3581.
Chen X., DeAngelis G. C., Angelaki D. E. (2014). Eye-centered visual receptive fields in the ventral intraparietal area, J. Neurophysiol. 112, 353–361.
Claeys K. G., Lindsey D. T., de Schutter E., Orban G. A. (2003). A higher order motion region in human inferior parietal lobule: evidence from fMRI, Neuron 40, 631–642.
Cohen B., Henn V., Raphan T., Dennett D. (1981). Velocity storage, nystagmus, and visual–vestibular interactions in humans, Ann. N. Y. Acad. Sci. 374, 421–433.
Coniglio A. J., Crane B. T. (2014). Human yaw rotation aftereffects with brief duration rotations are inconsistent with velocity storage, J. Assoc. Res. Otolaryngol. 15, 305–317.
Crane B. T. (2012). Fore–aft translation aftereffects, Exp. Brain Res. 219, 477–487.
Crane B. T. (2013). Limited interaction between translation and visual motion aftereffects in humans, Exp. Brain Res. 224, 165–178.
Cuturi L. F., MacNeilage P. R. (2013). Systematic biases in human heading estimation, PLoS ONE 8, e56862. DOI:10.1371/journal.pone.0056862.
Cuturi L. F., MacNeilage P. R. (2014). Optic flow induces nonvisual self-motion aftereffects, Curr. Biol. 24, 2817–2821.
De Winkel K. N., Katliar M., Bulthoff H. H. (2015). Forced fusion in multisensory heading estimation, PLoS ONE 10, e0127104. DOI:10.1371/journal.pone.0127104.
Deutschländer A., Bense S., Stephan T., Schwaiger M., Brandt T., Dieterich M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET, Hum. Brain Mapp. 16, 92–103.
Dieterich M., Brandt T. (2008). Functional brain imaging of peripheral and central vestibular disorders, Brain 131, 2538–2552.
Dieterich M., Brandt T. (2015). The bilateral central vestibular system: its pathways, functions, and disorders, Ann. N. Y. Acad. Sci. 1343, 10–26.
Dieterich M., Bucher S. F., Seelos K. C., Brandt T. (1998). Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study, Brain 121, 1479–1495.
Dieterich M., Bense S., Lutz S., Drzezga A., Stephan T., Bartenstein P., Brandt T. (2003). Dominance for vestibular cortical function in the non-dominant hemisphere, Cereb. Cortex 13, 994–1007.
Duffy C. J. (1998). MST neurons respond to optic flow and translational movement, J. Neurophysiol. 80, 1816–1827.
Duffy C. J. (2000). Optic flow analysis for self-movement perception, Int. Rev. Neurobiol. 44, 199–218.
Duffy C. J., Wurtz R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli, J. Neurophysiol. 65, 1329–1345.
Duffy C. J., Wurtz R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli, J. Neurophysiol. 65, 1346–1359.
Duhamel J. R., Colby C. L., Goldberg M. E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties, J. Neurophysiol. 79, 126–136.
Dukelow S. P., DeSouza J. F., Culham J. C., Van den Berg A. V., Menon R. S., Vilis T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements, J. Neurophysiol. 86, 1991–2000.
Eickhoff S. B., Weiss P. H., Amunts K., Fink G. R., Zilles K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping, Hum. Brain Mapp. 27, 611–621.
Erickson R. G., Thier P. (1991). A neuronal correlate of spatial stability during periods of self-induced visual motion, Exp. Brain Res. 86, 608–616.
Fasold O., von Brevern M., Kuhberg M., Ploner C. J., Villringer A., Lempert T., Wenzel R. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging, NeuroImage 17, 1384–1393.
Fattori P., Pitzalis S., Galletti C. (2009). The cortical visual area V6 in macaque and human brains, J. Physiol. Paris 103, 88–97.
Ferrè E. R., Sedda A., Gandola M., Bottini G. (2011). How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study, Exp. Brain Res. 208, 29–38.
Ferrè E. R., Day B. L., Bottini G., Haggard P. (2013a). How the vestibular system interacts with somatosensory perception: a sham-controlled study with galvanic vestibular stimulation, Neurosci. Lett. 550, 35–40.
Ferrè E. R., Bottini G., Iannetti G. D., Haggard P. (2013b). The balance of feelings: vestibular modulation of bodily sensations, Cortex 49, 748–758.
Ferrè E. R., Kaliuzhna M., Herbelin B., Haggard P., Blanke O. (2014). Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection, PLoS ONE 9, e86379. DOI:10.1371/journal.pone.0086379.
Fetsch C. R., Turner A. H., DeAngelis G. C., Angelaki D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception, J. Neurosci. 29, 15601–15612.
Fetsch C. R., DeAngelis G. C., Angelaki D. E. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons, Nat. Rev. Neurosci. 14, 429–442.
Frank S. M., Greenlee M. W. (2014). An MRI-compatible caloric stimulation device for the investigation of human vestibular cortex, J. Neurosci. Meth. 235, 208–218.
Frank S. M., Baumann O., Mattingley J. B., Greenlee M. W. (2014). Vestibular and visual responses in human posterior insular cortex, J. Neurophysiol. 112, 2481–2491.
Frank S. M., Wirth A. M., Greenlee M. W. (subm.). Visual–vestibular processing in the human Sylvian fissure.
Galletti C., Fattori P. (2003). Neuronal mechanisms for detection of motion in the field of view, Neuropsychologia 41, 1717–1727.
Galletti C., Squatrito S., Battaglini P. P., Grazia Maioli M. (1984). ‘Real-motion’ cells in the primary visual cortex of macaque monkeys, Brain Res. 301, 95–110.
Galletti C., Battaglini P. P., Aicardi G. (1988). ‘Real-motion’ cells in visual area V2 of behaving macaque monkeys, Exp. Brain Res. 69, 279–288.
Galletti C., Battaglini P. P., Fattori P. (1990). ‘Real-motion’ cells in area V3A of macaque visual cortex, Exp. Brain Res. 82, 67–76.
Gamberini M., Fattori P., Galletti C. (2015). The medial parietal occipital areas in the macaque monkey, Vis. Neurosci. 32, E013. DOI:10.1017/S0952523815000103.
Gibson J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Boston, MA, USA.
Grabherr L., Nicoucar K., Mast F. W., Merfeld D. M. (2008). Vestibular thresholds for yaw rotation about an Earth-vertical axis as a function of frequency, Exp. Brain Res. 186, 677–681.
Grantham D. W., Wightman F. L. (1979). Auditory motion aftereffects, Percept. Psychophys. 26, 403–408.
Greenlee M. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies, Int. Rev. Neurobiol. 44, 269–292.
Gu Y., Watkins P. V., Angelaki D. E., DeAngelis G. C. (2006). Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area, J. Neurosci. 26, 73–85.
Gu Y., DeAngelis G. C., Angelaki D. E. (2007). A functional link between area MSTd and heading perception based on vestibular signals, Nat. Neurosci. 10, 1038–1047.
Gu Y., Angelaki D. E., DeAngelis G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd, Nat. Neurosci. 11, 1201–1210.
Gu Y., Fetsch C. R., Adeyemo B., DeAngelis G. C., Angelaki D. E. (2010). Decoding of MSTd population activity accounts for variations in the precision of heading perception, Neuron 66, 596–609.
Gu Y., DeAngelis G. C., Angelaki D. E. (2012). Causal links between dorsal medial superior temporal area neurons and multisensory heading perception, J. Neurosci. 32, 2299–2313.
Guldin W. O., Grüsser O. J. (1998). Is there a vestibular cortex? Trends Neurosci. 21, 254–259.
Hitier M., Besnard S., Smith P. F. (2014). Vestibular pathways involved in cognition, Front. Integr. Neurosci. 8, 59. DOI:10.3389/fnint.2014.00059.
Holten V., Van der Smagt M. J., Donker S. F., Verstraten F. A. (2014). Illusory motion of the motion aftereffect induces postural sway, Psychol. Sci. 25, 1831–1834.
Huang R.-S., Chen C.-F., Sereno M. I. (2015). Neural substrates underlying the passive observation and active control of translational egomotion, J. Neurosci. 35, 4258–4267.
Huk A. C., Dougherty R. F., Heeger D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST, J. Neurosci. 22, 7195–7205.
Ionta S., Heydrich L., Lenggenhager B., Mouthon M., Fornari E., Chapuis D., Gassert R., Blanke O. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective, Neuron 70, 363–374.
Kaliuzhna M., Prsa M., Gale S., Lee S. J., Blanke O. (2015). Learning to integrate contradictory multisensory self-motion cue pairings, J. Vis. 15, 15.1.10. DOI:10.1167/15.1.10.
Kaminiarz A., Schlack A., Hoffmann K. P., Lappe M., Bremmer F. (2014). Visual selectivity for heading in the macaque ventral intraparietal area, J. Neurophysiol. 112, 2470–2480.
Kitagawa N., Ichihara S. (2002). Hearing visual motion in depth, Nature 416(6877), 172–174.
Kleinschmidt A., Thilo K. V., Büchel C., Gresty M. A., Bronstein A. M., Frackowiak R. S. J. (2002). Neural correlates of visual-motion perception as object- or self-motion, NeuroImage 16, 873–882.
Koenderink J. J. (1986). Optic flow, Vis. Res. 26, 161–179.
Kommerell G., Thiele H. (1970). Der optokinetische Kurzreiznystagmus [Optokinetic short-stimulation nystagmus], Graefes Arch. Klin. Exp. Ophthalmol. 179(3), 220–234.
Konkle T., Moore C. I. (2009). What can crossmodal aftereffects reveal about neural representation and dynamics? Commun. Integr. Biol. 2, 479–481.
Konkle T., Wang Q., Hayward V., Moore C. I. (2009). Motion aftereffects transfer between touch and vision, Curr. Biol. 19, 745–750.
Kontsevich L. L., Tyler C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold, Vis. Res. 39, 2729–2737.
Körding K. P., Beierholm U., Ma W. J., Quartz S., Tenenbaum J. B., Shams L. (2007). Causal inference in multisensory perception, PLoS ONE 2, e943. DOI:10.1371/journal.pone.0000943.
Lackner J. R., DiZio P. (2005). Vestibular, proprioceptive, and haptic contributions to spatial orientation, Annu. Rev. Psychol. 56, 115–147.
Lappe M., Rauschecker J. P. (1993). A neural network for the processing of optic flow from ego-motion in man and higher mammals, Neural Comp. 5, 374–391.
Lappe M., Rauschecker J. P. (1994). Heading detection from optic flow, Nature 369(6483), 712–713.
Lappe M., Bremmer F., Pekel M., Thiele A., Hoffmann K. P. (1996). Optic flow processing in monkey STS: a theoretical and experimental approach, J. Neurosci. 16, 6265–6285.
Lappe M., Pekel M., Hoffmann K.-P. (1998). Optokinetic eye movements elicited by radial optic flow in the macaque monkey, J. Neurophysiol. 79, 1461–1480.
Lappe M., Bremmer F., Van den Berg A. V. (1999). Perception of self-motion from visual flow, Trends Cogn. Sci. 3, 329–336.
Lobel E., Kleine J., Le Bihan D., Leroy-Willig A., Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation, J. Neurophysiol. 80, 2699–2709.
Lopez C., Blanke O. (2011). The thalamocortical vestibular system in animals and humans, Brain Res. Rev. 67, 119–146.
Lopez C., Blanke O., Mast F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis, Neuroscience 212, 159–179.
MacNeilage P. R., Banks M. S., Berger D. R., Bülthoff H. H. (2007). A Bayesian model of the disambiguation of gravitoinertial force by visual cues, Exp. Brain Res. 179, 263–290.
MacNeilage P. R., Banks M. S., DeAngelis G. C., Angelaki D. E. (2010). Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates, J. Neurosci. 30, 9084–9094.
Mather G., Pavan A., Campana G., Casco C. (2008). The motion aftereffect reloaded, Trends Cogn. Sci. 12, 481–487.
Mergner T., Rosemeier T. (1998). Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions — a conceptual model, Brain Res. Rev. 28, 118–135.
Mergner T., Nardi G., Becker W., Deecke L. (1983). The role of canal-neck interaction for the perception of horizontal trunk and head rotation, Exp. Brain Res. 49, 198–208.
Morgan M. L., DeAngelis G. C., Angelaki D. E. (2008). Multisensory integration in macaque visual cortex depends on cue reliability, Neuron 59, 662–673.
Morris A. P., Kubischik M., Hoffmann K.-P., Krekelberg B., Bremmer F. (2012). Dynamics of eye-position signals in the dorsal visual system, Curr. Biol. 22, 173–179.
Morrone M. C., Tosetti M., Montanaro D., Fiorentini A., Cioni G., Burr D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI, Nat. Neurosci. 3, 1322–1328.
Ni J., Tatalovic M., Straumann D., Olasagasti I. (2013). Gaze direction affects linear self-motion heading discrimination in humans, Eur. J. Neurosci. 38, 3248–3260.
Orban G. A., Fize D., Peuskens H., Denys K., Nelissen K., Sunaert S., Todd J., Vanduffel W. (2003). Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI, Neuropsychologia 41, 1757–1768.
Page W. K., Duffy C. J. (2003). Heading representation in MST: sensory interactions and population encoding, J. Neurophysiol. 89, 1994–2013.
Perrone J. A., Stone L. S. (1994). A model of self-motion estimation within primate extrastriate visual cortex, Vis. Res. 34, 2917–2938.
Pfeiffer C., Lopez C., Schmutz V., Duenas J. A., Martuzzi R., Blanke O. (2013). Multisensory origin of the subjective first-person perspective: visual, tactile, and vestibular mechanisms, PLoS ONE 8, e61751. DOI:10.1371/journal.pone.0061751.
Pfeiffer C., Schmutz V., Blanke O. (2014). Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective, Exp. Brain Res. 232, 4021–4033.
Pfeiffer C., van Elk M., Bernasconi F., Blanke O. (2016). Distinct vestibular effects on early and late somatosensory cortical processing in humans, NeuroImage 125, 208–219.
Pitzalis S., Sereno M. I., Committeri G., Fattori P., Galati G., Tosoni A., Galletti C. (2013). The human homologue of macaque area V6A, NeuroImage 82, 517–530.
Pitzalis S., Fattori P., Galletti C. (2015). The human cortical areas V6 and V6A, Vis. Neurosci. 32, E007. DOI:10.1017/S0952523815000048.
Priesol A. J., Valko Y., Merfeld D. M., Lewis R. F. (2014). Motion perception in patients with idiopathic bilateral vestibular hypofunction, Otolaryngol. Head Neck Surg. 150, 1040–1042.
Probst T., Straube A., Bles W. (1985). Differential effects of ambivalent visual–vestibular–somatosensory stimulation on the perception of self-motion, Behav. Brain Res. 16, 71–79.
Prsa M., Gale S., Blanke O. (2012). Self-motion leads to mandatory cue fusion across sensory modalities, J. Neurophysiol. 108, 2282–2291.
Riecke B. E., Jordan J. D. (2015). Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection), Front. Psychol. 6, 713. DOI:10.3389/fpsyg.2015.00713.
Roach N. W., Heron J., McGraw P. V. (2006). Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration, Proc. R. Soc. B Biol. Sci. 273, 2159–2168.
Schlack A., Hoffmann K. P., Bremmer F. (2002). Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP), Eur. J. Neurosci. 16, 1877–1886.
Seemungal B. M. (2014). The cognitive neurology of the vestibular system, Curr. Opin. Neurol. 27, 125–132.
Seno T., Ito H., Sunaga S. (2010). Vection aftereffects from expanding/contracting stimuli, Seeing Perceiving 23, 273–294.
Sereno M. I., Huang R. S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps, Nat. Neurosci. 9, 1337–1343.
Sereno M. I., Huang R. S. (2014). Multisensory maps in parietal cortex, Curr. Opin. Neurobiol. 24, 39–46.
Shenoy K. V., Bradley D. C., Andersen R. A. (1999). Influence of gaze rotation on the visual response of primate MSTd neurons, J. Neurophysiol. 81, 2764–2786.
Shu Z. J., Swindale N. V., Cynader M. S. (1993). Spectral motion produces an auditory after-effect, Nature 364(6439), 721–723.
Smith A. T., Wall M. B., Thilo K. V. (2012). Vestibular inputs to human motion-sensitive visual cortex, Cereb. Cortex 22, 1068–1077.
Sommer M. A., Wurtz R. H. (2008). Brain circuits for the internal monitoring of movements, Annu. Rev. Neurosci. 31, 317–338.
Sperry R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion, J. Comp. Physiol. Psychol. 43, 482–489.
Stephan T., Deutschländer A., Nolte A., Schneider E., Wiesmann M., Brandt T., Dieterich M. (2005). Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies, NeuroImage 26, 721–732.
Sunaert S., Van Hecke P., Marchal G., Orban G. A. (1999). Motion-responsive regions of the human brain, Exp. Brain Res. 127, 355–370.
Sutherland N. S. (1961). Figural aftereffects and apparent size, Q. J. Exp. Psychol. 13, 222–228.
Takahashi K., Gu Y., May P. J., Newlands S. D., DeAngelis G. C., Angelaki D. E. (2007). Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity, J. Neurosci. 27, 9742–9768.
Uesaki M., Ashida H. (2015). Optic-flow selective cortical sensory regions associated with self-reported states of vection, Front. Psychol. 6, 775. DOI:10.3389/fpsyg.2015.00775.
Upadhyay U. D., Page W. K., Duffy C. J. (2000). MST responses to pursuit across optic flow with motion parallax, J. Neurophysiol. 84, 818–826.
Valko Y., Lewis R. F., Priesol A. J., Merfeld D. M. (2012). Vestibular labyrinth contributions to human whole-body motion discrimination, J. Neurosci. 32, 13537–13542.
Vallar G., Sterzi R., Bottini G., Cappa S., Rusconi M. L. (1990). Temporary remission of left hemianesthesia after vestibular stimulation. A sensory neglect phenomenon, Cortex 26, 123–131.
Van den Berg A. V. (1993). Perception of heading, Nature 365(6446), 497–498.
von Holst E., Mittelstaedt H. (1950). Das Reafferenzprinzip, Naturwissenschaften 37, 464–476.
Wall M. B., Smith A. T. (2008). The representation of egomotion in the human brain, Curr. Biol. 18, 191–194.
Wallace M. T., Roberson G., Hairston W. D., Stein B. E., Vaughan J. W., Schirillo J. A. (2004). Unifying multisensory signals across time and space, Exp. Brain Res. 158, 252–258.
Warren W. H., Hannon D. J. (1988). Direction of self-motion is perceived from optical flow, Nature 336(6195), 162–163.
Warren W. H., Hannon D. J. (1990). Eye movements and optical flow, J. Opt. Soc. Am. A 7, 160–169.
Watanabe J., Hayashi S., Kajimoto H., Tachi S., Nishida S. (2007). Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors, Exp. Brain Res. 180, 577–582.
Wexler M., Panerai F., Lamouret I., Droulez J. (2001). Self-motion and the perception of stationary objects, Nature 409(6816), 85–88.
Yu C. P., Page W. K., Gaborski R., Duffy C. J. (2010). Receptive field dynamics underlying MST neuronal optic flow selectivity, J. Neurophysiol. 103, 2794–2807.
Zhang T., Britten K. H. (2011). Parietal area VIP causally influences heading perception during pursuit eye movements, J. Neurosci. 31, 2569–2575.
Zhang T., Heuer H. W., Britten K. H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates, Neuron 42, 993–1001.
zu Eulenburg P., Baumgärtner U., Treede R.-D., Dieterich M. (2013). Interoceptive and multimodal functions of the operculo-insular cortex: tactile, nociceptive and vestibular representations, NeuroImage 83, 75–86.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2292 | 361 | 29 |
Full Text Views | 859 | 254 | 14 |
PDF Views & Downloads | 256 | 31 | 0 |
Self motion perception involves the integration of visual, vestibular, somatosensory and motor signals. This article reviews the findings from single unit electrophysiology, functional and structural magnetic resonance imaging and psychophysics to present an update on how the human and non-human primate brain integrates multisensory information to estimate one’s position and motion in space. The results indicate that there is a network of regions in the non-human primate and human brain that processes self motion cues from the different sense modalities.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2292 | 361 | 29 |
Full Text Views | 859 | 254 | 14 |
PDF Views & Downloads | 256 | 31 | 0 |