Although psychology is greatly preoccupied by the tight link between the way that individuals perceive the world and their intelligent, creative behavior, there is little experimental work on the relationship between individual differences in perception and cognitive ability in healthy populations. Here, individual differences in problem solving ability were examined in relation to multisensory perception as measured by tolerance for temporal asynchrony between auditory and visual inputs, i.e., the multisensory temporal binding window. The results demonstrated that enhanced performance in both verbal and nonverbal problem solving tasks (the Remote Associates Test and Raven’s Advanced Progressive Matrices Task) is predicted by a narrower audio-visual temporal binding window, which reflects greater sensitivity to subtle discrepancies in sensory inputs. This suggests that the precision of individuals’ temporal window of multisensory integration might mirror their capacities for complex reasoning and thus the precision of their thoughts.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Akbari Chermahini S., Hommel B. (2010). The (b) link between creativity and dopamine: spontaneous eye blink rates predict and dissociate divergent and convergent thinking, Cognition 115, 458–465.
Akbari Chermahini S. A., Hickendorff M., Hommel B. (2012). Development and validity of a Dutch version of the remote associates task: an item-response theory approach, Think. Skills Creat. 7, 177–186.
Ansburg P. I., Hill K. (2003). Creative and analytic thinkers differ in their use of attentional resources, Pers. Indiv. Dif. 34, 1141–1152.
Bahrick L. E. (2010). Intermodal perception and selective attention to intersensory redundancy: implications for typical social development and autism, in: Blackwell Handbook of Infant Development, 2nd edn., Bremner G., Wachs T. D. (Eds), pp. 120–166. Blackwell Publishing, Oxford, UK.
Bahrick L. E., Lickliter R. (2000). Intersensory redundancy guides attentional selectivity and perceptual learning in infancy, Dev. Psychol. 36, 190–201.
Bahrick L. E., Lickliter R. (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development, in: Multisensory Development, Bremner A. J., Lewkowicz D. J., Spence C. (Eds), pp. 183–206. Oxford University Press, Oxford, UK.
Bahrick L. E., Lickliter R. (2014). Learning to attend selectively the dual role of intersensory redundancy, Curr. Dir. Psychol. Sci. 23, 414–420.
Bastien-Toniazzo M., Stroumza A., Cavé C. (2009). Audio-visual perception and integration in developmental dyslexia: an exploratory study using the McGurk effect, Curr. Psychol. Lett. 25, 2–14.
Bebko J. M., Weiss J. A., Demark J. L., Gomez P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism, J. Child Psychol. Psychiatry 47, 88–98.
Bebko J. M., Schroeder J. H., Weiss J. A. (2014). The McGurk effect in children with autism and Asperger syndrome, Autism Res. 7, 50–59.
Beeman M. J., Bowden E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems, Mem. Cogn. 28, 1231–1241.
Berg C. A., Strough J., Calderone K. S., Sansone C., Weir C. (1998). The role of problem definitions in understanding age and context effects on strategies for solving everyday problems, Psychol. Aging 13, 29–44.
Bishop C. W., Miller L. M. (2009). A multisensory cortical network for understanding speech in noise, J. Cogn. Neurosci. 21, 1790–1804.
Boenke L. T., Deliano M., Ohl F. W. (2009). Stimulus duration influences perceived simultaneity in audiovisual temporal-order judgment, Exp. Brain Res. 198, 233–244.
Bowden E. M., Jung-Beeman M. (2003). Normative data for 144 compound remote associate problems, Behav. Res. Methods Instrum. Comput. 35, 634–639.
Calvert G. A., Thesen T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain, J. Physiol. Paris 98, 191–205.
Cascio C. J., Foss-Feig J. H., Burnette C. P., Heacock J. L., Cosby A. A. (2012). The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception, Autism 16, 406–419.
Conrey B., Pisoni D. B. (2006). Auditory–visual speech perception and synchrony detection for speech and nonspeech signals, J. Acoust. Soc. Am. 119, 4065–4073.
De Boer-Schellekens L., Eussen M., Vroomen J. (2013). Diminished sensitivity of audiovisual temporal order in autism spectrum disorder, Front. Integr. Neurosci. 7, 8. DOI:10.3389/fnint.2013.00008.
De Gelder B., Bertelson P. (2003). Multisensory integration, perception and ecological validity, Trends Cogn. Sci. 7, 460–467.
De Gelder B., Vroomen J., Van der Heide L. (1991). Face recognition and lip-reading in autism, Eur. J. Cogn. Psychol. 3, 69–86.
De Gelder B., Vroomen J., Annen L., Masthof E., Hodiamont P. (2003). Audio-visual integration in schizophrenia, Schizophr. Res. 59, 211–218.
De Gelder B., Vroomen J., De Jong S. J., Masthoff E. D., Trompenaars F. J., Hodiamont P. (2005). Multisensory integration of emotional faces and voices in schizophrenics, Schizophr. Res. 72, 195–203.
De Jong J. J., Hodiamont P. P. G., Van den Stock J., De Gelder B. (2009). Audiovisual emotion recognition in schizophrenia: reduced integration of facial and vocal affect, Schizophr. Res. 107, 286–293.
DeShon R. P., Chan D., Weissbein D. A. (1995). Verbal overshadowing effects on raven’s advanced progressive matrices: evidence for multidimensional performance determinants, Intelligence 21, 135–155.
Diederich A., Colonius H. (2009). Crossmodal interaction in speeded responses: time window of integration model, Progr. Brain Res. 174, 119–135.
Diederich A., Colonius H. (2015). The time window of multisensory integration: relating reaction times and judgments of temporal order, Psychol. Rev. 122, 232–241.
Diederich A., Colonius H., Schomburg A. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration model, Neuropsychologia 46, 2556–2562.
Dillon R. F., Pohlmann J. T., Lohman D. F. (1981). A factor analysis of Raven’s advanced progressive matrices freed of difficulty factors, Educ. Psychol. Meas. 41, 1295–1302.
Dixon N. F., Spitz L. (1980). The detection of auditory visual desynchrony, Perception 9, 719–721.
Donohue S. E., Woldorff M. G., Mitroff S. R. (2010). Video game players show more precise multisensory temporal processing abilities, Atten. Percept. Psychophys. 72, 1120–1129.
Donohue S. E., Darling E. F., Mitroff S. R. (2012). Links between multisensory processing and autism, Exp. Brain Res. 222, 377–387.
Dorfman J., Shames V. A., Kihlstrom J. F. (1996). Intuition, incubation, and insight: implicit cognition in problem solving, in: Implicit Cognition, Underwood G. (Ed.), pp. 257–296. Oxford University Press, Oxford, UK.
Epelboim J., Suppes P. (1997). Eye movements during geometrical problem solving, Perception 26(1 Suppl.), 138.
Foss-Feig J. H., Kwakye L. D., Cascio C. J., Burnette C. P., Kadivar H., Stone W. L., Wallace M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders, Exp. Brain Res. 203, 381–389.
Foss-Feig J. H., Heacock J. L., Cascio C. J. (2012). Tactile responsiveness patterns and their association with core features in autism spectrum disorders, Res. Autism Spectr. Disord. 6, 337–344.
Foucher J. R., Lacambre M., Pham B. T., Giersch A., Elliott M. A. (2007). Low time resolution in schizophrenia: lengthened windows of simultaneity for visual, auditory and bimodal stimuli, Schizophr. Res. 97, 118–127.
Fujisaki W., Nishida S. Y. (2009). Audio-tactile superiority over visuo-tactile and audio-visual combinations in the temporal resolution of synchrony perception, Exp. Brain Res. 198, 245–259.
Fujisaki W., Shimojo S., Kashino M., Nishida S. Y. (2004). Recalibration of audiovisual simultaneity, Nat. Neurosci. 7, 773–778.
Girin L., Schwartz J. L., Feng G. (2001). Audio-visual enhancement of speech in noise, J. Acoust. Soc. Am. 109, 3007–3020.
Gondan M., Niederhaus B., Rösler F., Röder B. (2005). Multisensory processing in the redundant-target effect: a behavioral and event-related potential study, Percept. Psychophys. 67, 713–726.
Grant E. R., Spivey M. J. (2003). Eye movements and problem solving guiding attention guides thought, Psychol. Sci. 14, 462–466.
Grant K. W., Walden B. E., Seitz P. F. (1998). Auditory–visual speech recognition by hearing-impaired subjects: consonant recognition, sentence recognition, and auditory–visual integration, J. Acoust. Soc. Am. 103, 2677–2690.
Hairston W. D., Laurienti P. J., Mishra G., Burdette J. H., Wallace M. T. (2003). Multisensory enhancement of localization under conditions of induced myopia, Exp. Brain Res. 152, 404–408.
Hairston W. D., Burdette J. H., Flowers D. L., Wood F. B., Wallace M. T. (2005). Altered temporal profile of visual–auditory multisensory interactions in dyslexia, Exp. Brain Res. 166, 474–480.
Hershenson M. (1962). Reaction time as a measure of intersensory facilitation, J. Exp. Psychol. 63, 289–293.
Hillock A. R., Powers A. R., Wallace M. T. (2011). Binding of sights and sounds: age-related changes in multisensory temporal processing, Neuropsychologia 49, 461–467.
Hillock-Dunn A., Wallace M. T. (2012). Developmental changes in the multisensory temporal binding window persist into adolescence, Dev. Sci. 15, 688–696.
Husserl E. (1991). On the Phenomenology of the Consciousness of Internal Time (1893–1917), Vol. 4. Springer Science & Business Media, Dordrecht, The Netherlands.
Irwin J. R., Tornatore L. A., Brancazio L., Whalen D. H. (2011). Can children with autism spectrum disorders “hear” a speaking face? Child Dev. 82, 1397–1403.
Just M. A., Carpenter P. A. (1985). Cognitive coordinate systems: accounts of mental rotation and individual differences in spatial ability, Psychol. Rev. 92, 137–172.
Keetels M., Vroomen J. (2007). No effect of auditory–visual spatial disparity on temporal recalibration, Exp. Brain Res. 182, 559–565.
Keetels M., Vroomen J. (2008). Temporal recalibration to tactile–visual asynchronous stimuli, Neurosci. Lett. 430, 130–134.
King A. J. (2005). Multisensory integration: strategies for synchronization, Curr. Biol. 15, R339–R341.
King A. J., Calvert G. A. (2001). Multisensory integration: perceptual grouping by eye and ear, Curr. Biol. 11, R322–R325.
Knoblich G., Ohlsson S., Raney G. E. (2001). An eye movement study of insight problem solving, Mem. Cogn. 29, 1000–1009.
Kujala T., Lepistö T., Näätänen R. (2013). The neural basis of aberrant speech and audition in autism spectrum disorders, Neurosci. Biobehav. Rev. 37, 697–704.
Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., Wallace M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders, Front. Integr. Neurosci. 4, 129. DOI:10.3389/fnint.2010.00129.
Lewkowicz D. J. (1996). Perception of auditory–visual temporal synchrony in human infants, J. Exp. Psychol. Hum. Percept. Perform. 22, 1094–1106.
Lewkowicz D. J. (2010). Infant perception of audio-visual speech synchrony, Dev. Psychol. 46, 66–77.
Lewkowicz D. J., Flom R. (2014). The audiovisual temporal binding window narrows in early childhood, Child Dev. 85, 685–694.
Lovelace C. T., Stein B. E., Wallace M. T. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection, Cognitive Brain Tesearch 17, 447–453.
Massaro D. W., Cohen M. M., Smeele P. M. (1996). Perception of asynchronous and conflicting visual and auditory speech, J. Acoust. Soc. Am. 100, 1777–1786.
Mednick S. (1962). The associative basis of the creative process, Psychol. Rev. 69, 220–232.
Mégevand P., Molholm S., Nayak A., Foxe J. J. (2013). Recalibration of the multisensory temporal window of integration results from changing task demands, PLoS ONE 8, e71608. DOI:10.1371/journal.pone.0071608.
Molholm S., Ritter W., Murray M. M., Javitt D. C., Schroeder C. E., Foxe J. J. (2002). Multisensory auditory–visual interactions during early sensory processing in humans: a high-density electrical mapping study, Cogn. Brain Res. 14, 115–128.
Mongillo E. A., Irwin J. R., Whalen D. H., Klaiman C., Carter A. S., Schultz R. T. (2008). Audiovisual processing in children with and without autism spectrum disorders, J. Autism Dev. Disord. 38, 1349–1358.
Navarra J., Vatakis A., Zampini M., Soto-Faraco S., Humphreys W., Spence C. (2005). Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration, Cogn. Brain Res. 25, 499–507.
Noel J. P., Wallace M. T., Orchard-Mills E., Alais D., Van der Burg E. (2015). True and perceived synchrony are preferentially associated with particular sensory pairings, Sci. Rep. 5, 17467. DOI:10.1038/srep17467.
Ohlsson S. (2012). The problems with problem solving: reflections on the rise, current status, and possible future of a cognitive research paradigm, J. Problem Solv. 5, 101–128.
Pearl D., Yodashkin-Porat D., Katz N., Valevski A., Aizenberg D., Sigler M., Weizman A., Kikinzon L. (2009). Differences in audiovisual integration, as measured by McGurk phenomenon, among adult and adolescent patients with schizophrenia and age-matched healthy control groups, Compr. Psychiatry 50, 186–192.
Powers A. R., Hillock A. R., Wallace M. T. (2009). Perceptual training narrows the temporal window of multisensory binding, J. Neurosci. 29, 12265–12274.
Powers A. R., Hevey M. A., Wallace M. T. (2012). Neural correlates of multisensory perceptual learning, J. Neurosci. 32, 6263–6274.
Raven J. C. (1965). Advanced Progressive Matrices: Sets I and II. Lewis, London, UK.
Ross L. A., Saint-Amour D., Leavitt V. M., Molholm S., Javitt D. C., Foxe J. J. (2007). Impaired multisensory processing in schizophrenia: deficits in the visual enhancement of speech comprehension under noisy environmental conditions, Schizophr. Res. 97, 173–183.
Russo N., Foxe J. J., Brandwein A. B., Altschuler T., Gomes H., Molholm S. (2010). Multisensory processing in children with autism: high-density electrical mapping of auditory–somatosensory integration, Autism Res. 3, 253–267.
Schall J. D., Hanes D. P. (1993). Neural basis of saccade target selection in frontal eye field during visual search, Nature 366, 467–469.
Schooler J. W., Melcher J. (1995). The ineffability of insight, in: The Creative Cognition Approach, Smith S. M., Ward T. B., Finke R. A. (Eds), pp. 97–133. MIT Press, Cambridge, MA, USA.
Sekuler R., Sekuler A. B., Lau R. (1997). Sound alters visual motion perception, Nature 385, 308.
Shams L. (2002). Integration in the brain — the subconscious alteration of visual perception by cross-modal integration, Sci. Consc. Rev. 1, 1–4.
Spearman C., Wynn-Jones L. (1951). Human Ability. Macmillan, London, UK.
Spence C., Baddeley R., Zampini M., James R., Shore D. I. (2003). Multisensory temporal order judgments: when two locations are better than one, Percept. Psychophys. 65, 318–328.
Spence C., Squire S. (2003). Multisensory integration: maintaining the perception of synchrony, Curr. Biol. 13, R519–R521.
Stein B. E., Stanford T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron, Nat. Rev. Neurosci. 9, 255–266.
Stevenson R. A., James T. W. (2009). Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition, Neuroimage 44, 1210–1223.
Stevenson R. A., Wallace M. T. (2013). Multisensory temporal integration: task and stimulus dependencies, Exp. Brain Res. 227, 249–261.
Stevenson R. A., Zemtsov R. K., Wallace M. T. (2011). Multisensory illusions and the temporal binding window, Iperception 2, 903.
Stevenson R. A., Zemtsov R. K., Wallace M. T. (2012). Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions, J. Exp. Psychol. Hum. Percept. Perform. 38, 1517–1529.
Stevenson R. A., Wilson M. M., Powers A. R., Wallace M. T. (2013). The effects of visual training on multisensory temporal processing, Exp. Brain Res. 225, 479–489.
Stevenson R. A., Siemann J. K., Woynaroski T. G., Schneider B. C., Eberly H. E., Camarata S. M., Wallace M. T. (2014a). Brief report: arrested development of audiovisual speech perception in autism spectrum disorders, J. Autism Dev. Disord 44, 1470–1477.
Stevenson R. A., Segers M., Ferber S., Barense M. D., Wallace M. T. (2014b). The impact of multisensory integration deficits on speech perception in children with autism spectrum disorders, Front. Psychol. 5, 379. DOI:10.3389/fpsyg.2014.00379.
Stevenson R. A., Siemann J. K., Schneider B. C., Eberly H. E., Woynaroski T. G., Camarata S. M., Wallace M. T. (2014c). Multisensory temporal integration in autism spectrum disorders, J. Neurosci. 34, 691–697.
Stevenson R. A., Segers M., Ferber S., Barense M. D., Camarata S. & Wallace M. T. (in press). Keeping time in the brain: autism spectrum disorder and audiovisual temporal processing, Autism Res., DOI:10.1002/aur.1566.
Stone J. V., Hunkin N. M., Porrill J., Wood R., Keeler V., Beanland M., Port M., Porter N. R. (2001). When is now? Perception of simultaneity, Proc. R. Soc. Lond. B Biol. Sci. 268, 31–38.
Sumby W. H., Pollack I. (1954). Visual contribution to speech intelligibility in noise, J. Acoust. Soci. Am. 26, 212–215.
Szycik G. R., Münte T. F., Dillo W., Mohammadi B., Samii A., Emrich H. M., Dietrich D. E. (2009). Audiovisual integration of speech is disturbed in schizophrenia: an fMRI study, Schizophr. Res. 110, 111–118.
Thomas L. E., Lleras A. (2007). Moving eyes and moving thought: on the spatial compatibility between eye movements and cognition, Psychonom. Bull. Rev. 14, 663–668.
Vaillant-Molina M., Bahrick L. E. (2012). The role of intersensory redundancy in the emergence of social referencing in 51/2-month-old infants, Dev. Psychol. 48, 1–9.
Van der Smagt M. J., van Engeland H., Kemner C. (2007). Brief report: can you see what is not there? Low-level auditory–visual integration in autism spectrum disorder, J. Autism Dev. Disord. 37, 2014–2019.
Van Eijk R. L., Kohlrausch A., Juola J. F., Van de Par S. (2008). Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type, Percept. Psychophys. 70, 955–968.
Van Wassenhove V., Grant K. W., Poeppel D. (2007). Temporal window of integration in auditory–visual speech perception, Neuropsychologia 45, 598–607.
Vatakis A., Bakou A. E. (2015). Distorted multisensory experiences of order and simultaneity, in: Time Distortions in Mind: Temporal Processing in Clinical Populations, Vatakis A., Allman M. (Eds), pp. 1–36. Brill, Leiden, The Netherlands.
Vatakis A., Spence C. (2006). Audiovisual synchrony perception for music, speech, and object actions, Brain Res. 1111, 134–142.
Vatakis A., Spence C. (2010). Audiovisual temporal integration for complex speech, object-action, animal call, and musical stimuli, in: Multisensory Object Perception in the Primate Brain, Naumer M. J., Kaiser J. (Eds), pp. 95–121. Springer-Verlag, Berlin & Heidelberg, Germany.
Vatakis A., Navarra J., Soto-Faraco S., Spence C. (2008). Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments, Exp. Brain Res. 185, 521–529.
Visser E., Zwiers M. P., Kan C. C., Hoekstra L., Van Opstal A. J., Buitelaar J. K. (2013). Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders, J. Psychiatry Neurosci. 38, 398–406.
Vroomen J., Keetels M. (2010). Perception of intersensory synchrony: a tutorial review, Atten. Percept. Psychophys. 72, 871–884.
Vroomen J., Keetels M., De Gelder B., Bertelson P. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony, Cogn. Brain Res. 22, 32–35.
Wallace M. T., Stevenson R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities, Neuropsychologia 64, 105–123.
Woynaroski T. G., Kwakye L. D., Foss-Feig J. H., Stevenson R. A., Stone W. L., Wallace M. T. (2013). Multisensory speech perception in children with autism spectrum disorders, J. Autism Dev. Disord. 43, 2891–2902.
Zabelina D. L., Beeman M. (2013). Short-term attentional perseveration associated with real-life creative achievement, Front. Psychol. 4, 191. DOI:10.3389/fpsyg.2013.00191.
Zabelina D. L., O’Leary D., Pornpattananangkul N., Nusslock R., Beeman M. (2015a). Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers, Neuropsychologia 69, 77–84.
Zabelina D., Saporta A., Beeman M. (2015b). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking, Mem. Cogn. 1, 1–11.
Zampini M., Shore D. I., Spence C. (2003). Audiovisual temporal order judgments, Exp. Brain Res. 152, 198–210.
Zampini M., Guest S., Shore D. I., Spence C. (2005). Audio-visual simultaneity judgments, Percept. Psychophys. 67, 531–544.
Zmigrod S., Hommel B. (2011). The relationship between feature binding and consciousness: evidence from asynchronous multi-modal stimuli, Consc. Cogn. 20, 586–593.
Zmigrod S., Zmigrod L. (2015). Zapping the gap: reducing the multisensory temporal binding window by means of transcranial direct current stimulation (tDCS), Consc. Cogn. 35, 143–149.
Zmigrod S., De Sonneville L. M. J., Colzato L. S., Swaab H., Hommel B. (2013). Cognitive control of feature bindings: evidence from children with autistic spectrum disorder, Psychol. Res. 77, 147–154.
Zmigrod S., Zmigrod L., Hommel B. (2015). Zooming into creativity: individual differences in attentional global-local biases are linked to creative thinking, Front. Psychol. 6, 1647. DOI:10.3389/fpsyg.2015.01647.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1367 | 263 | 32 |
Full Text Views | 309 | 10 | 0 |
PDF Views & Downloads | 120 | 17 | 0 |
Although psychology is greatly preoccupied by the tight link between the way that individuals perceive the world and their intelligent, creative behavior, there is little experimental work on the relationship between individual differences in perception and cognitive ability in healthy populations. Here, individual differences in problem solving ability were examined in relation to multisensory perception as measured by tolerance for temporal asynchrony between auditory and visual inputs, i.e., the multisensory temporal binding window. The results demonstrated that enhanced performance in both verbal and nonverbal problem solving tasks (the Remote Associates Test and Raven’s Advanced Progressive Matrices Task) is predicted by a narrower audio-visual temporal binding window, which reflects greater sensitivity to subtle discrepancies in sensory inputs. This suggests that the precision of individuals’ temporal window of multisensory integration might mirror their capacities for complex reasoning and thus the precision of their thoughts.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1367 | 263 | 32 |
Full Text Views | 309 | 10 | 0 |
PDF Views & Downloads | 120 | 17 | 0 |