What Can Illusory Conjunctions Reveal About Synaesthetic Bindings?

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The visual system successfully binds the shapes and colours of objects; therefore, our visual experience regarding the objects around us is coherent. However, this binding process can break down when attention is diverted, producing illusory conjunctions (ICs); for example, when presented with a red 2 and a green 5, the observer may report a green 2 and a red 5. The strongest observation of binding in human cognition is found in synaesthesia. In grapheme–colour synaesthesia, linguistic stimuli (e.g., letters or numbers) are strongly associated with colours. It is debatable whether these highly stable bindings constitute a form of early binding that occurs outside the focus of attention. We examined for the first time the occurrence of ICs in grapheme–colour synaesthesia. Experiment 1 replicated our previous finding, showing the effects of numerical distance on ICs (Arend et al., Psychon. Bull. Rev. 2013, 20, 1181–1186). Participants viewed a display containing two centrally presented letters and two coloured numbers and were asked to report: (1) whether the letters were same/different, (2) the colour of the larger number, and (3) the level of confidence concerning the colour of the number. Experiment 2 used a modified version of this task. Synaesthetes (N=5) and controls (N=15) viewed number–colour pairs that were congruent or incongruent with that of the synaesthetic association. Grapheme–colour synaesthesia significantly affected ICs on incongruent but not on congruent trials. Our findings strongly support the notion that shape and colour are free-floating features in synaesthesia, similar to what is observed in normal cognition.

What Can Illusory Conjunctions Reveal About Synaesthetic Bindings?

in Multisensory Research

Sections

References

ArendI.NaparstekS.HenikA. (2013). Numerical-spatial representation affects spatial coding: binding errors across the numerical distance effectPsychon. Bull. Rev. 2011811186.

AshbyF. G.PrinzmetalW.IvryR.MaddoxT. (1996). A formal theory of illusory conjunctionsPsychol. Rev. 103165192.

BernsteinL. J.RobertsonL. C. (1998). Illusory conjunctions of color and motion with shape following bilateral parietal lesionsPsychol. Sci. 9167175.

CinelC.HumphreysG. W.PoliR. (2002). Cross-modal illusory conjunctions between vision and touchJ. Exp. Psychol. Hum. Percept. Perform. 2812431266.

CohenA.IvryR. (1989). Illusory conjunctions inside and outside the focus of attentionJ. Exp. Psychol. Hum. Percept. Perform. 15650663.

CohenA.RafalR. D. (1991). Attention and feature integration: illusory conjunctions in a patient with a parietal lobe lesionPsychol. Sci. 2106110.

EaglemanD. M.KaganA. D.NelsonS. S.SagaramD.SarmaA. K. (2007). A standardized test battery for the study of synesthesiaJ. Neurosci. Meth. 159139145.

Friedman-HillS. R.RobertsonL. C.TreismanA. (1995). Parietal contributions to visual feature binding: evidence from a patient with bilateral lesionsScience 269853855.

HumphreysG. W.CinelC.WolfeJ.OlsonA.KlempenN. (2000). Fractionating the binding process: neuropsychological evidence distinguishing binding of form from binding of surface featuresVis. Res. 4015691596.

MattingleyJ. B.RichA. N.YellandG.BradshawJ. L. (2001). Unconscious priming eliminates automatic binding of colour and alphanumeric form in synaesthesiaNature 410580582.

MattingleyJ. B.PayneJ. M.RichA. N. (2006). Attentional load attenuates synaesthetic priming effects in grapheme–colour synaesthesiaCortex 42213221.

NovichS.ChengS.EaglemanD. M. (2011). Is synaesthesia one condition or many? A large-scale analysis reveals subgroupsJ. Neuropsychol. 5353371.

PalmeriT. J.BlakeR.MaroisR.FlaneryM. A.WhetsellW. (2002). The perceptual reality of synesthetic colorsProc. Natl Acad. Sci. USA 9941274131.

PrinzmetalW. (1981). Principles of feature integration in visual perceptionPercept. Psychophys. 30330340.

PrinzmetalW.HendersonD.IvryR. (1995). Loosening the constraints on illusory conjunctions: assessing the roles of exposure duration and attentionJ. Exp. Psychol. Hum. Percept. Perform. 2113621375.

PrinzmetalW.IvryR. B.BeckD.ShimizuN. (2002). A measurement theory of illusory conjunctionsJ. Exp. Psychol. Hum. Percept. Perform. 28251269.

RamachandranV. S.HubbardE. M. (2001). Psychophysical investigations into the neural basis of synaesthesiaProc. Biol. Sco. 268979983.

RichA. N.KarstoftK. I. (2013). Exploring the benefit of synaesthetic colours: testing for ‘pop-out’ in individuals with grapheme–colour synaesthesiaCogn. Neuropsychol. 30110125.

RichA. N.MattingleyJ. B. (2010). Out of sight, out of mind: the attentional blink can eliminate synaesthetic coloursCognition 114320328.

RobertsonL. C. (2003). Binding, spatial attention and perceptual awarenessNat. Rev. Neurosci. 493102.

RobertsonL. C.SagivN. (Eds) (2004). Synesthesia: Perspectives From Cognitive Neuroscience. Oxford University PressOxford, UK.

RobertsonL.TreismanA.Friedman-HillS.GraboweckyM. (1997). The interaction of spatial and object pathways: evidence from Balint’s syndromeJ. Cogn. Neurosci. 9295317.

RothenN.MeierB. (2009). Do synesthetes have a general advantage in visual search and episodic memory? A case for group studiesPLoS One 4e5037. DOI:10.1371/journal.pone.0005037.

RouwR.ScholteH. S.ColizoliO. (2011). Brain areas involved in synaesthesia: a reviewJ. Neuropsychol. 5214242.

SagivN.HeerJ.RobertsonL. (2006). Does binding of synesthetic color to the evoking grapheme require attention? Cortex 42232242.

SmilekD.DixonM. J.CudahyC.MerikleP. M. (2001). Synaesthetic photisms influence visual perceptionJ. Cogn. Neurosci. 13930936.

TreismanA. (1996). The binding problemCurr. Opin. Neurobiol. 6171178.

TreismanA. M.GeladeG. (1980). A feature-integration theory of attentionCogn. Psychol. 1297136.

TreismanA.SchmidtH. (1982). Illusory conjunctions in the perception of objectsCogn. Psychol. 14107141.

WardR.DanzigerS.OwenV.RafalR. (2002). Deficits in spatial coding and feature binding following damage to spatiotopic maps in the human pulvinarNat. Neurosci. 599100.

WardJ.JonasC.DienesZ.SethA. (2010). Grapheme–colour synaesthesia improves detection of embedded shapes, but without pre-attentive ‘pop-out’ of synaesthetic colourProc. Biol. Sci. 27710211026.

WeissP. H.FinkG. R. (2009). Grapheme–colour synaesthetes show increased grey matter volumes of parietal and fusiform cortexBrain 13(2) 6570.

Figures

  • View in gallery

    Layout and timing of the task as adapted from Arend et al. (2013).

  • View in gallery

    Description of the synaesthete group (Initials; Sex: F = female; M = male; Age = in years) including each synaesthete’s colour–number association and the number stimuli used in the experiment (i.e., stimuli) and number stimuli used as fillers (i.e., filler stimuli).

  • View in gallery

    Mean proportion of IC rate (IC–FE) as a function of colour–number congruency for synaesthetes and controls. Error bars represent standard error of the mean.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 52 52 24
Full Text Views 85 85 64
PDF Downloads 3 3 1
EPUB Downloads 0 0 0