Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.

Multisensory Research

A Journal of Scientific Research on All Aspects of Multisensory Processing

Sections

References

AiL.RoT. (2014). The phase of prestimulus alpha oscillations affects tactile perception, J. Neurophysiol. 111, 13001307.

AndersenT.TiippanaK.SamsM. (2004). Factors influencing audiovisual fission and fusion illusions, Cogn. Brain Res. 21, 301308.

BalzJ.KeilJ.RomeroY. R.MekleR.SchubertF.AydinS.IttermannB.GallinatJ.SenkowskiD. (2016). GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion, NeuroImage 125, 724730.

BaumgartenT. J.SchnitzlerA.LangeJ. (2015). Beta oscillations define discrete perceptual cycles in the somatosensory domain, Proc. Natl Acad. Sci. USA 112, 1218712192.

BuschN. A.DuboisJ.VanrullenR. (2009). The phase of ongoing EEG oscillations predicts visual perception, J. Neurosci. 29, 78697876.

CecereR.ReesG.RomeiV. (2015). Individual differences in alpha frequency drive crossmodal illusory perception, Curr. Biol. 25, 231235.

CravoA. M.SantosK. M.ReyesM. B.CaetanoM. S.ClaessensP. M. E. (2015). Visual causality judgments correlate with the phase of alpha oscillations, J. Cogn. Neurosci. 83, 18.

DelormeA.MakeigS. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Meth. 134, 921.

DuguéL.MarqueP.VanrullenR. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception, J. Neurosci. 31, 1188911893.

FellingerR.KlimeschW.GruberW.FreunbergerR.DoppelmayrM. (2011). Pre-stimulus alpha phase-alignment predicts P1-amplitude, Brain Res. Bull. 85, 417423.

FoxeJ. J.SnyderA. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention, Front. Psychol. 2, 154. DOI:10.3389/fpsyg.2011.00154.

FreyJ. N.MainyN.LachauxJ. P.MullerN.BertrandO.WeiszN. (2014). Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task, J. Neurosci. 34, 66346639.

GipsB.Van der EerdenJ. P. J. M.JensenO. (2016). A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations, Eur. J. Neurosci. 44, 21472161.

GoldmanR. I.SternJ. M.EngelJ.Jr.CohenM. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm, Neuroreport 13, 24872492.

HaigA. R.GordonE. (1998). EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component, Int. J. Neurosci. 93, 101115.

HanslmayrS.AslanA.StaudiglT.KlimeschW.HerrmannC. S.BäumlK.-H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects, NeuroImage 37, 14651473.

HartmannT.SchleeW.WeiszN. (2012). It’s only in your head: expectancy of aversive auditory stimulation modulates stimulus-induced auditory cortical alpha desynchronization, NeuroImage 60, 170178.

HerrmannC. S.StrüberD.HelfrichR. F.EngelA. K. (2015). EEG oscillations: from correlation to causality, Int. J. Psychophysiol. 103, 1221.

IsaacsonJ. S.ScanzianiM. (2011). How inhibition shapes cortical activity, Neuron 72, 231243.

JansenB. H.BrandtM. E. (1991). The effect of the phase of prestimulus alpha activity on the averaged visual evoked response, Electroencephalogr. Clin. Neurophysiol. 80, 241250.

JensenO.MazaheriA. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition, Front. Hum. Neurosci. 4, 186. DOI:10.3389/fnhum.2010.00186.

JensenO.BonnefondM.VanrullenR. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli, Trends Cogn. Sci. 16, 200206.

JensenO.GipsB.BergmannT. O.BonnefondM. (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing, Trends Neurosci. 37, 357369. DOI:10.1016/j.tins.2014.04.001.

JungT. P.MakeigS.WesterfieldM.TownsendJ.CourchesneE.SejnowskiT. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects, Clin. Neurophysiol. 111, 17451758.

KeilJ.MüllerN.HartmannT.WeiszN. (2014). Prestimulus beta power and phase synchrony influence the sound-induced flash illusion, Cereb. Cortex 24, 12781288.

KeilJ.PomperU.SenkowskiD. (2016). Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal prediction, Cortex 74, 277288.

KlimeschW. (1997). EEG-alpha rhythms and memory processes, Int. J. Psychophysiol. 26, 319340.

KlimeschW.SausengP.HanslmayrS. (2007). EEG alpha oscillations: the inhibition–timing hypothesis, Brain Res. Rev. 53, 6388.

LakatosP.ChenC.-M.O’ConnellM. N.MillsA.SchroederC. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex, Neuron 53, 279292.

LangeJ.OostenveldR.FriesP. (2013). Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception, J. Neurosci. 33, 32123220.

LangeJ.KeilJ.SchnitzlerA.Van DijkH.WeiszN. (2014). The role of alpha oscillations for illusory perception, Behav. Brain Res. 271, 294301.

LaufsH.KleinschmidtA.BeyerleA.EgerE.Salek-HaddadiA.PreibischC.KrakowK. (2003). EEG-correlated fMRI of human alpha activity, NeuroImage 19, 14631476.

LeonardelliE.BraunC.WeiszN.LithariC.OccelliV.ZampiniM. (2015). Prestimulus oscillatory alpha power and connectivity patterns predispose perceptual integration of an audio and a tactile stimulus, Hum. Brain Mapp. 36, 34863498.

LouB.LiY.PhiliastidesM. G.SajdaP. (2014). Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making, NeuroImage 87, 242251.

MarisE.OostenveldR. (2007). Nonparametric statistical testing of EEG- and MEG-data, J. Neurosci. Meth. 164, 177190.

MathewsonK. E.GrattonG.FabianiM.BeckD. M.RoT. (2009). To see or not to see: prestimulus alpha phase predicts visual awareness, J. Neurosci. 29, 27252732.

MoosmannM.RitterP.KrastelI.BrinkA.TheesS.BlankenburgF.TaskinB.ObrigH.VillringerA. (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy, NeuroImage 20, 145158.

MüllerN.WeiszN. (2012). Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds, Cereb. Cortex 22, 16041613.

OostenveldR.FriesP.MarisE.SchoffelenJ.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci. 2011, 156869. DOI:10.1155/2011/156869.

PalvaS.PalvaJ. M. (2007). New vistas for α-frequency band oscillations, Trends Neurosci. 30, 150158.

Pascual-MarquiR. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details, Methods Find. Exp. Clin. Pharmacol. 24(Suppl. D), 512.

PomperU.KeilJ.FoxeJ. J.SenkowskiD. (2015). Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices, Hum. Brain Mapp. 36, 32463259.

RihsT.MichelC.ThutG. (2009). A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention, NeuroImage 44, 190199.

RomeiV.BrodbeckV.MichelC.AmediA.Pascual-LeoneA.ThutG. (2008a). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas, Cereb. Cortex 18, 20102018.

RomeiV.RihsT.BrodbeckV.ThutG. (2008b). Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability, Neuroreport 19, 203208.

RuhnauP.HauswaldA.WeiszN. (2014). Investigating ongoing brain oscillations and their influence on conscious perception — network states and the window to consciousness, Front. Psychol. 5, 1230. DOI:10.3389/fpsyg.2014.01230.

SamahaJ.PostleB. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception, Curr. Biol. 25, 29852990.

SenkowskiD.SchneiderT.FoxeJ.EngelA. (2008). Crossmodal binding through neural coherence: implications for multisensory processing, Trends Neurosci. 31, 401409.

ShamsL.KamitaniY.ShimojoS. (2000). Illusions. What you see is what you hear, Nature 408(6814), 788.

TalsmaD. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mind, Front. Integr. Neurosci. 9, 19. DOI:10.3389/fnint.2015.00019.

TalsmaD.SenkowskiD.Soto-FaracoS.WoldorffM. G. (2010). The multifaceted interplay between attention and multisensory integration, Trends Cogn. Sci. 14, 400410.

ThutG.NietzelA.BrandtS. A.Pascual-LeoneA. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection, J. Neurosci. 26, 94949502.

Van AtteveldtN.MurrayM. M.ThutG.SchroederC. E. (2014). Multisensory integration: flexible use of general operations, Neuron 81, 12401253.

Van der BurgE.OliversC. N. L.BronkhorstA. W.TheeuwesJ. (2008). Audiovisual events capture attention: evidence from temporal order judgments, J. Vis. 8, 2. DOI:10.1167/8.5.2.

Van DijkH.SchoffelenJ.-M.OostenveldR.JensenO. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability, J. Neurosci. 28, 18161823.

Van ErpJ. B. F.PhilippiT. G.de WinkelK. N.WerkhovenP. (2014). Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flash, Neurosci. Lett. 562, 7984.

VibellJ.KlingeC.ZampiniM.SpenceC.NobreA. C. (2007). Temporal order is coded temporally in the brain: early event-related potential latency shifts underlying prior entry in a cross-modal temporal order judgment task, J. Cogn. Neurosci. 19, 109120.

WangX.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev. 90, 11951268.

WetzelsR.WagenmakersE.-J. (2012). A default Bayesian hypothesis test for correlations and partial correlations, Psychonom. Bull. Rev. 19, 10571064.

WyartV.Tallon-BaudryC. (2009). How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision bias, J. Neurosci. 29, 87158725.

ZumerJ. M.ScheeringaR.SchoffelenJ.-M.NorrisD. G.JensenO. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex, PLoS Biol. 12, e1001965. DOI:10.1371/journal.pbio.1001965.s005.

Figures

  • Experimental setup in the SIFI paradigm. Left panel: Participants fixated a central white cross while being presented with auditory and visual stimuli. A single flash presented alongside two rapidly repeating tones is either perceived as one or two flashes. Right panel: Timeline of the critical A2V1 trial, in which participants potentially perceived two visual inputs. The visual stimulus and the first auditory stimulus were presented simultaneously. The second auditory stimulus was presented 57 ms after the onset of the first stimulus. Six hundred milliseconds after the onset of the first stimulus, the fixation cross was replaced by a response cue, which comprised an empty circle that was presented in the center of the screen. The intertrial-interval (ITI) varied randomly between 1000 and 1500 ms.

    View in gallery
  • Correlation between the IAF and the SIFI illusion rate. (A) The IAF is negatively correlated with the SIFI illusion rate, indicating that a lower IAF facilitates audiovisual integration. (B) Statistical analysis revealed one occipital cluster of eight electrodes for the negative correlation between the IAF and the SIFI illusion rate. (C) Correlation values were projected into source space using sLoreta. To counter the center of head bias, source-level data were normalized by an estimate of the spatially inhomogeneous noise. The resulting neural activation index (NAI) of correlation values indicated the calcarine sulcus as the likely source of the correlation between IAF and SIFI illusion rate.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 139 139 135
Full Text Views 2 2 2
PDF Downloads 0 0 0
EPUB Downloads 0 0 0