Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion

in Multisensory Research
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Ongoing neural oscillations reflect fluctuations of cortical excitability. A growing body of research has underlined the role of neural oscillations for stimulus processing. Neural oscillations in the alpha band have gained special interest in electrophysiological research on perception. Recent studies proposed the idea that neural oscillations provide temporal windows in which sensory stimuli can be perceptually integrated. This also includes multisensory integration. In the current high-density EEG-study we examined the relationship between the individual alpha frequency (IAF) and cross-modal audiovisual integration in the sound-induced flash illusion (SIFI). In 26 human volunteers we found a negative correlation between the IAF and the SIFI illusion rate. Individuals with a lower IAF showed higher audiovisual illusions. Source analysis suggested an involvement of the visual cortex, especially the calcarine sulcus, for this relationship. Our findings corroborate the notion that the IAF affects the cross-modal integration of auditory on visual stimuli in the SIFI. We integrate our findings with recent observations on the relationship between audiovisual integration and neural oscillations and suggest a multifaceted influence of neural oscillations on multisensory processing.

Individual Alpha Frequency Relates to the Sound-Induced Flash Illusion

in Multisensory Research

Sections

References

AiL.RoT. (2014). The phase of prestimulus alpha oscillations affects tactile perceptionJ. Neurophysiol. 11113001307.

AndersenT.TiippanaK.SamsM. (2004). Factors influencing audiovisual fission and fusion illusionsCogn. Brain Res. 21301308.

BalzJ.KeilJ.RomeroY. R.MekleR.SchubertF.AydinS.IttermannB.GallinatJ.SenkowskiD. (2016). GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusionNeuroImage 125724730.

BaumgartenT. J.SchnitzlerA.LangeJ. (2015). Beta oscillations define discrete perceptual cycles in the somatosensory domainProc. Natl Acad. Sci. USA 1121218712192.

BuschN. A.DuboisJ.VanrullenR. (2009). The phase of ongoing EEG oscillations predicts visual perceptionJ. Neurosci. 2978697876.

CecereR.ReesG.RomeiV. (2015). Individual differences in alpha frequency drive crossmodal illusory perceptionCurr. Biol. 25231235.

CravoA. M.SantosK. M.ReyesM. B.CaetanoM. S.ClaessensP. M. E. (2015). Visual causality judgments correlate with the phase of alpha oscillationsJ. Cogn. Neurosci. 8318.

DelormeA.MakeigS. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysisJ. Neurosci. Meth. 134921.

DuguéL.MarqueP.VanrullenR. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perceptionJ. Neurosci. 311188911893.

FellingerR.KlimeschW.GruberW.FreunbergerR.DoppelmayrM. (2011). Pre-stimulus alpha phase-alignment predicts P1-amplitudeBrain Res. Bull. 85417423.

FoxeJ. J.SnyderA. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attentionFront. Psychol. 2154. DOI:10.3389/fpsyg.2011.00154.

FreyJ. N.MainyN.LachauxJ. P.MullerN.BertrandO.WeiszN. (2014). Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention taskJ. Neurosci. 3466346639.

GipsB.Van der EerdenJ. P. J. M.JensenO. (2016). A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillationsEur. J. Neurosci. 4421472161.

GoldmanR. I.SternJ. M.EngelJ.Jr.CohenM. S. (2002). Simultaneous EEG and fMRI of the alpha rhythmNeuroreport 1324872492.

HaigA. R.GordonE. (1998). EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP componentInt. J. Neurosci. 93101115.

HanslmayrS.AslanA.StaudiglT.KlimeschW.HerrmannC. S.BäumlK.-H. (2007). Prestimulus oscillations predict visual perception performance between and within subjectsNeuroImage 3714651473.

HartmannT.SchleeW.WeiszN. (2012). It’s only in your head: expectancy of aversive auditory stimulation modulates stimulus-induced auditory cortical alpha desynchronizationNeuroImage 60170178.

HerrmannC. S.StrüberD.HelfrichR. F.EngelA. K. (2015). EEG oscillations: from correlation to causalityInt. J. Psychophysiol. 1031221.

IsaacsonJ. S.ScanzianiM. (2011). How inhibition shapes cortical activityNeuron 72231243.

JansenB. H.BrandtM. E. (1991). The effect of the phase of prestimulus alpha activity on the averaged visual evoked responseElectroencephalogr. Clin. Neurophysiol. 80241250.

JensenO.MazaheriA. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibitionFront. Hum. Neurosci. 4186. DOI:10.3389/fnhum.2010.00186.

JensenO.BonnefondM.VanrullenR. (2012). An oscillatory mechanism for prioritizing salient unattended stimuliTrends Cogn. Sci. 16200206.

JensenO.GipsB.BergmannT. O.BonnefondM. (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processingTrends Neurosci. 37357369. DOI:10.1016/j.tins.2014.04.001.

JungT. P.MakeigS.WesterfieldM.TownsendJ.CourchesneE.SejnowskiT. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjectsClin. Neurophysiol. 11117451758.

KeilJ.MüllerN.HartmannT.WeiszN. (2014). Prestimulus beta power and phase synchrony influence the sound-induced flash illusionCereb. Cortex 2412781288.

KeilJ.PomperU.SenkowskiD. (2016). Distinct patterns of local oscillatory activity and functional connectivity underlie intersensory attention and temporal predictionCortex 74277288.

KlimeschW. (1997). EEG-alpha rhythms and memory processesInt. J. Psychophysiol. 26319340.

KlimeschW.SausengP.HanslmayrS. (2007). EEG alpha oscillations: the inhibition–timing hypothesisBrain Res. Rev. 536388.

LakatosP.ChenC.-M.O’ConnellM. N.MillsA.SchroederC. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortexNeuron 53279292.

LangeJ.OostenveldR.FriesP. (2013). Reduced occipital alpha power indexes enhanced excitability rather than improved visual perceptionJ. Neurosci. 3332123220.

LangeJ.KeilJ.SchnitzlerA.Van DijkH.WeiszN. (2014). The role of alpha oscillations for illusory perceptionBehav. Brain Res. 271294301.

LaufsH.KleinschmidtA.BeyerleA.EgerE.Salek-HaddadiA.PreibischC.KrakowK. (2003). EEG-correlated fMRI of human alpha activityNeuroImage 1914631476.

LeonardelliE.BraunC.WeiszN.LithariC.OccelliV.ZampiniM. (2015). Prestimulus oscillatory alpha power and connectivity patterns predispose perceptual integration of an audio and a tactile stimulusHum. Brain Mapp. 3634863498.

LouB.LiY.PhiliastidesM. G.SajdaP. (2014). Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision makingNeuroImage 87242251.

MarisE.OostenveldR. (2007). Nonparametric statistical testing of EEG- and MEG-dataJ. Neurosci. Meth. 164177190.

MathewsonK. E.GrattonG.FabianiM.BeckD. M.RoT. (2009). To see or not to see: prestimulus alpha phase predicts visual awarenessJ. Neurosci. 2927252732.

MoosmannM.RitterP.KrastelI.BrinkA.TheesS.BlankenburgF.TaskinB.ObrigH.VillringerA. (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopyNeuroImage 20145158.

MüllerN.WeiszN. (2012). Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target soundsCereb. Cortex 2216041613.

OostenveldR.FriesP.MarisE.SchoffelenJ.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological dataComput. Intell. Neurosci. 2011156869. DOI:10.1155/2011/156869.

PalvaS.PalvaJ. M. (2007). New vistas for α-frequency band oscillationsTrends Neurosci. 30150158.

Pascual-MarquiR. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical detailsMethods Find. Exp. Clin. Pharmacol. 24(Suppl. D) 512.

PomperU.KeilJ.FoxeJ. J.SenkowskiD. (2015). Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor corticesHum. Brain Mapp. 3632463259.

RihsT.MichelC.ThutG. (2009). A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attentionNeuroImage 44190199.

RomeiV.BrodbeckV.MichelC.AmediA.Pascual-LeoneA.ThutG. (2008a). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areasCereb. Cortex 1820102018.

RomeiV.RihsT.BrodbeckV.ThutG. (2008b). Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitabilityNeuroreport 19203208.

RuhnauP.HauswaldA.WeiszN. (2014). Investigating ongoing brain oscillations and their influence on conscious perception — network states and the window to consciousnessFront. Psychol. 51230. DOI:10.3389/fpsyg.2014.01230.

SamahaJ.PostleB. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perceptionCurr. Biol. 2529852990.

SenkowskiD.SchneiderT.FoxeJ.EngelA. (2008). Crossmodal binding through neural coherence: implications for multisensory processingTrends Neurosci. 31401409.

ShamsL.KamitaniY.ShimojoS. (2000). Illusions. What you see is what you hearNature 408(6814) 788.

TalsmaD. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mindFront. Integr. Neurosci. 919. DOI:10.3389/fnint.2015.00019.

TalsmaD.SenkowskiD.Soto-FaracoS.WoldorffM. G. (2010). The multifaceted interplay between attention and multisensory integrationTrends Cogn. Sci. 14400410.

ThutG.NietzelA.BrandtS. A.Pascual-LeoneA. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detectionJ. Neurosci. 2694949502.

Van AtteveldtN.MurrayM. M.ThutG.SchroederC. E. (2014). Multisensory integration: flexible use of general operationsNeuron 8112401253.

Van der BurgE.OliversC. N. L.BronkhorstA. W.TheeuwesJ. (2008). Audiovisual events capture attention: evidence from temporal order judgmentsJ. Vis. 82. DOI:10.1167/8.5.2.

Van DijkH.SchoffelenJ.-M.OostenveldR.JensenO. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination abilityJ. Neurosci. 2818161823.

Van ErpJ. B. F.PhilippiT. G.de WinkelK. N.WerkhovenP. (2014). Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flashNeurosci. Lett. 5627984.

VibellJ.KlingeC.ZampiniM.SpenceC.NobreA. C. (2007). Temporal order is coded temporally in the brain: early event-related potential latency shifts underlying prior entry in a cross-modal temporal order judgment taskJ. Cogn. Neurosci. 19109120.

WangX.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognitionPhysiol. Rev. 9011951268.

WetzelsR.WagenmakersE.-J. (2012). A default Bayesian hypothesis test for correlations and partial correlationsPsychonom. Bull. Rev. 1910571064.

WyartV.Tallon-BaudryC. (2009). How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision biasJ. Neurosci. 2987158725.

ZumerJ. M.ScheeringaR.SchoffelenJ.-M.NorrisD. G.JensenO. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortexPLoS Biol. 12e1001965. DOI:10.1371/journal.pbio.1001965.s005.

Figures

  • View in gallery

    Experimental setup in the SIFI paradigm. Left panel: Participants fixated a central white cross while being presented with auditory and visual stimuli. A single flash presented alongside two rapidly repeating tones is either perceived as one or two flashes. Right panel: Timeline of the critical A2V1 trial, in which participants potentially perceived two visual inputs. The visual stimulus and the first auditory stimulus were presented simultaneously. The second auditory stimulus was presented 57 ms after the onset of the first stimulus. Six hundred milliseconds after the onset of the first stimulus, the fixation cross was replaced by a response cue, which comprised an empty circle that was presented in the center of the screen. The intertrial-interval (ITI) varied randomly between 1000 and 1500 ms.

  • View in gallery

    Correlation between the IAF and the SIFI illusion rate. (A) The IAF is negatively correlated with the SIFI illusion rate, indicating that a lower IAF facilitates audiovisual integration. (B) Statistical analysis revealed one occipital cluster of eight electrodes for the negative correlation between the IAF and the SIFI illusion rate. (C) Correlation values were projected into source space using sLoreta. To counter the center of head bias, source-level data were normalized by an estimate of the spatially inhomogeneous noise. The resulting neural activation index (NAI) of correlation values indicated the calcarine sulcus as the likely source of the correlation between IAF and SIFI illusion rate.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 1096 1096 393
Full Text Views 178 178 81
PDF Downloads 9 9 2
EPUB Downloads 0 0 0