Auditory Rhythms Influence Judged Time to Contact of an Occluded Moving Object

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We studied the expected moment of reappearance of a moving object after it disappeared from sight. In particular, we investigated whether auditory rhythms influence time to contact (TTC) judgments. Using displays in which a moving disk disappears behind an occluder, we examined whether an accompanying auditory rhythm influences the expected TTC of an occluded moving object. We manipulated a baseline auditory rhythm — consisting of equal sound and pause durations — in two ways: either the pause durations or the sound durations were increased to create slower rhythms. Participants had to press a button at the moment they expected the disk to reappear. Variations in pause duration (Experiments 1 and 2) affected expected TTC, in contrast to variations in sound duration (Experiment 3). These results show that auditory rhythms affect expected reappearance of an occluded moving object. Second, these results suggest that temporal auditory grouping is an important factor in TTC.

Multisensory Research

A Journal of Scientific Research on All Aspects of Multisensory Processing

Sections

References

BattagliaP. W.JacobsR. A.AslinR. N. (2003). Bayesian integration of visual and auditory signals for spatial localization, J. Opt. Soc. Am. A 20, 13911397.

BaurèsR.BennettS. J.CauserJ. (2015). Temporal estimation with two moving objects: overt and covert pursuit, Exp. Brain Res. 233, 253261.

BurkeL. (1952). On the tunnel effect, Q. J. Exp. Psychol. 4, 121138.

BurrD.BanksM. S.MorroneM. C. (2009). Auditory dominance over vision in the perception of interval duration, Exp. Brain Res. 198, 4957.

ChienS. E.OnoF.WatanabeK. (2013). A transient auditory signal shifts the perceived offset position of a moving visual object, Front. Psychol. 4, 70. DOI:10.3389/fpsyg.2013.00070.

DeLuciaP. R.KaiserM. K.BushJ. M.MeyerL. E.SweetB. T. (2003). Information integration in judgments about time to contact, Q. J. Exp. Psychol. 56, 11651189.

DeLuciaP. R.PreddyD.OberfeldD. (2016). Audiovisual integration of time-to-contact information for approaching objects, Multisens. Res. 29, 365395.

FlombaumJ. I.SchollB. J. (2006). A temporal same-object advantage in the tunnel effect: facilitated change-detection for persisting objects, J. Exp. Psychol. Hum. Percept. Perform. 32, 840853.

FlombaumJ. I.SchollB. J.PylyshynZ. W. (2008). Attentional resources in visual tracking through occlusion: the high-beams effect, Cognition 107, 904931.

FoleyA. J.MichalukL. M.ThomasD. G. (2004). Pace alteration and estimation of time intervals, Percept. Mot. Skills 98, 291298.

GeiserE.GabrieliJ. D. (2013). Influence of rhythmic grouping on duration perception: a novel auditory illusion, PLoS One 8, e54273. DOI:10.1371/journal.pone.0054273.

GetzmannS. (2007). The effect of brief auditory stimuli on visual apparent motion, Perception 36, 10891103.

GordonM. S.RosenblumL. D. (2005). Effects of intrastimulus modality change on audiovisual time-to-arrival judgments, Percept. Psychophys. 67, 580594.

HansonJ. V. M.HeronJ.WhitakerD. (2008). Recalibration of perceived time across sensory modalities, Exp. Brain Res. 185, 347352.

HarrisonN. R.WuergerS. M.MeyerG. F. (2010). Reaction time facilitation for horizontally moving auditory–visual stimuli, J. Vis. 10, 16. DOI:10.1167/10.14.16.

HechtH.SavelsberghG. J. (Eds) (2004). Time-to-Contact. Elsevier, Amsterdam, The Netherlands.

HidakaS.TeramotoW.GyobaJ.SuzukiY. (2010). Sound can prolong the visible persistence of moving visual objects, Vis. Res. 50, 20932099.

HidakaS.TeramotoW.SugitaY. (2015). Spatiotemporal processing in crossmodal interactions for perception of the external world: a review, Front. Integr. Neurosci. 9. DOI:10.3389/fnint.2015.00062.

HofbauerM.WuergerS. M.MeyerG. F.RoehrbeinF.SchillK.ZetzscheC. (2004). Catching audiovisual mice: predicting the arrival time of auditory-visual motion signals, Cogn. Affect. Behav. Neurosci. 4, 241250.

HorrN. K.Di LucaM. (2015). Timing rhythms: perceived duration increases with a predictable temporal structure of short interval fillers, PLoS One 10, e0141018. DOI:10.1371/journal.pone.0141018.

HubbardT. L. (1995). Environmental invariants in the representation of motion: implied dynamics and representational momentum, gravity, friction, and centripetal force, Psychon. Bull. Rev. 2, 322338.

HubbardT. L.CourtneyJ. R. (2010). Cross-modal influences on representational momentum and representational gravity, Perception 39, 851862.

HuberS.KristH. (2004). When is the ball going to hit the ground? Duration estimates, eye movements, and mental imagery of object motion, J. Exp. Psychol. Hum. Percept. Perform. 30, 431444.

JohnsonK. A.BryanM.PolonowitaK.DecroupetD.CoullJ. T. (2016). Isochronous sequential presentation helps children orient their attention in time, Front. Psychol. 7, 1417. DOI:10.3389/fpsyg.2016.01417.

KawachiY.GyobaJ. (2006). A new response-time measure of object persistence in the tunnel effect, Acta. Psychol. 123, 7390.

KurodaT.TomimatsuE.GrondinS.MiyazakiM. (2016). Perceived empty duration between sounds of different lengths: possible relation with repetition and rhythmic grouping, Atten. Percept. Psychophys. 78, 26782689.

MakinA. D. J.LawsonR.BertaminiM.PickeringJ. (2014). Auditory clicks distort perceived velocity but only when the system has to rely on extraretinal signals, Q. J. Exp. Psychol. 67, 455473.

MeyerG. F.WuergerS. M.RöhrbeinF.ZetzscheC. (2005). Low-level integration of auditory and visual motion signals requires spatial co-localisation, Exp. Brain Res. 166, 538547.

Morein-ZamirS.Soto-FaracoS.KingstoneA. (2003). Auditory capture of vision: examining temporal ventriloquism, Brain Res. Cogn. Brain Res. 17, 154163.

ParrottS.Guzman-MartinezE.OrtegaL.GraboweckyM.HuntingtonM. D.SuzukiS. (2015). Direction of auditory pitch-change influences visual search for slope from graphs, Perception 44, 764778.

PatelA. D.IversenJ. R.ChenY.ReppB. H. (2005). The influence of metricality and modality on synchronization with a beat, Exp. Brain Res. 163, 226238.

Penton-VoakI. S.EdwardsH.PercivalA.WeardenJ. H. (1996). Speeding up an internal clock in humans? Effects of click trains on subjective duration, J. Exp. Psychol. Anim. Behav. Process. 22, 307320.

PoynterW. D. (1983). Duration judgment and the segmentation of experience, Mem. Cognit. 11, 7782.

ReppB. H.PenelA. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences, J. Exp. Psychol. Hum. Percept. Perform. 28, 10851099.

ReppB. H.PenelA. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms, Psychol. Res. 68, 252270.

RoseboomW.KawabeT.NishidaS. (2013). The cross-modal double flash illusion depends on featural similarity between cross-modal inducers, Sci. Rep. 3, 3437. DOI:10.1038/srep03437.

SanabriaD.CapizziM.CorreaÁ. (2011). Rhythms that speed you up, J. Exp. Psychol. Hum. Percept. Perform. 37, 236244.

SekulerR.SekulerA. B.LauR. (1997). Sound alters visual motion perception, Nature 385, 308.

ShamsL.KamitaniY.ShimojoS. (2002). Visual illusion induced by sound, Brain Res. Cogn. Brain Res. 14, 147152.

SussmanE.GumenyukV. (2005). Organization of sequential sounds in auditory memory, Neuroreport 16, 15191523.

ThinèsG.CostallA.ButterworthG. (Eds) (1991). Michotte’s Experimental Phenomenology of Perception. Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA.

TreismanM.FaulknerA.NaishP. L. N.BroganD. (1990). The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency, Perception 19, 705748.

VroomenJ.KeetelsM.GelderB. D.BertelsonP. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony, Brain Res. Cogn. Brain Res. 22, 3235.

WatanabeK.ShimojoS. (2001). When sound affects vision: effects of auditory grouping on visual motion perception, Psychol. Sci. 12, 109116.

WeardenJ. H.NortonR.MartinS.Montford-BebbO. (2007). Internal clock processes and the filled-duration illusion, J. Exp. Psychol. Hum. Percept. Perform. 33, 716729.

WittenI. B.KnudsenE. I. (2005). Why seeing is believing: merging auditory and visual worlds, Neuron 48, 489496.

WuergerS.MeyerG.HofbauerM.ZetzscheC.SchillK. (2010). Motion extrapolation of auditory–visual targets, Inf. Fusion 11, 4550.

Figures

  • Schematic representation of Experiment 1 showing three displays of a visual stimulus sequence.

    View in gallery
  • Schematic diagram of Experiment 1 showing the auditory and visual stimuli. The auditory sequence starts to play when the center of the object reaches the leading contour of the occluder. Each solid rectangle represents a 100 ms sound: (A) No-sound condition; (B) Fast rhythm, i.e., 100 ms sounds alternated with 100 ms pauses; (C) Slow rhythm, i.e., 100 ms sounds alternated with 300 ms pauses.

    View in gallery
  • Results of Experiment 1. Average ratios between judged time to contact and actual time to contact (JTTC/ATTC ratios). Error bars indicate ±1 SEM.

    View in gallery
  • Schematic diagram of Experiment 2 showing the auditory and visual stimuli. The auditory sequence starts to play when the center of the object reaches the leading contour of the occluder. Each solid rectangle represents sound: (A) No-sound condition; (B) 100 ms sounds alternated with 100 ms pauses; (C) 100 ms sounds alternated with 200 ms pauses; (D) 100 ms sounds alternated with 300 ms pauses; (E) 100 ms sounds alternated with 400 ms pauses.

    View in gallery
  • Results of Experiment 2. Average ratios between judged time to contact and actual time to contact (JTTC/ATTC ratios). Error bars indicate ±1 SEM.

    View in gallery
  • Schematic diagram of Experiment 3 showing the auditory and visual stimuli. The auditory sequence starts to play when the center of the object reaches the leading contour of the occluder. Each solid rectangle represents a sound: (A) No-sound condition; (B) 100 ms sounds alternated with 100 ms pauses; (C) 200 ms sounds alternated with 100 ms pauses; (D) 300 ms sounds alternated with 100 ms pauses; (E) 400 ms sounds alternated with 100 ms pauses.

    View in gallery
  • Results of Experiment 3. Average ratios between judged time to contact and actual time to contact (JTTC/ATTC ratios). Error bars indicate ±1 SEM.

    View in gallery
  • Results of Experiment 4. Average judged continuity of pause and sound durations. Error bars indicate ±1 SEM.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 6
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0