Cortical Correlates of the Simulated Viewpoint Oscillation Advantage for Vection

in Multisensory Research
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Behavioural studies have consistently found stronger vection responses for oscillating, compared to smooth/constant, patterns of radial flow (the simulated viewpoint oscillation advantage for vection). Traditional accounts predict that simulated viewpoint oscillation should impair vection by increasing visual–vestibular conflicts in stationary observers (as this visual oscillation simulates self-accelerations that should strongly stimulate the vestibular apparatus). However, support for increased vestibular activity during accelerating vection has been mixed in the brain imaging literature. This fMRI study examined BOLD activity in visual (cingulate sulcus visual area — CSv; medial temporal complex — MT+; V6; precuneus motion area — PcM) and vestibular regions (parieto-insular vestibular cortex — PIVC/posterior insular cortex — PIC; ventral intraparietal region — VIP) when stationary observers were exposed to vection-inducing optic flow (i.e., globally coherent oscillating and smooth self-motion displays) as well as two suitable control displays. In line with earlier studies in which no vection occurred, CSv and PIVC/PIC both showed significantly increased BOLD activity during oscillating global motion compared to the other motion conditions (although this effect was found for fewer subjects in PIVC/PIC). The increase in BOLD activity in PIVC/PIC during prolonged exposure to the oscillating (compared to smooth) patterns of global optical flow appears consistent with vestibular facilitation.

Cortical Correlates of the Simulated Viewpoint Oscillation Advantage for Vection

in Multisensory Research

Sections

References

AbelesM. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University PressCambridge, UK.

AllisonR. S.ZacherJ. E.KirollosR.GutermanP. S.PalmisanoS. (2012). Perception of smooth and perturbed vection in short-duration microgravityExp. Brain Res. 223479487.

AttwellD.IadecolaC. (2002). The neural basis of functional brain imaging signalsTrends Neurosci. 25621625.

BillingtonJ.WilkieR. M.WannJ. P. (2013). Obstacle avoidance and smooth trajectory control: neural areas highlighted during improved locomotor performanceFront. Behav. Neurosci. 79. DOI:10.3389/fnbeh.2013.00009.

BraitenbergV.SchüzA. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity2nd edn. Springer-VerlagHeidelberg, Germany.

BrandtS. A.BrockeJ.RorichtS.PlonerC. J.VillringerA.MeyerB. U. (2002). In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imagingNeuroimage 14366375.

BrandtT.BartensteinP.JanekA.DieterichM. (1998). Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortexBrain 12117491758.

BremmerF.SchlackA.ShahN. J.ZafirisO.KubischikM.HoffmannK.FinkG. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeysNeuron 29287296.

CardinV.SmithA. T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulationCereb. Cortex 2019641973.

CardinV.SmithA. T. (2011). Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motionJ. Neurophysiol. 10612401249.

DeutschländerA.BenseS.StephanT.SchwaigerM.BrandtT.DietrichM. (2002). Sensory systems interactions during simultaneous vestibular and visual stimulation in PETHum Brain Mapp. 1692103.

DeutschländerA.BenseS.StephanT.SchwaigerT.DieterichM.BrandtT. (2004). Roll vection versus linear vection: comparison of brain activations in PETHum Brain Mapp. 21143153.

DieterichM.BucherS. F.SeelosK. C.BrandtT. (1998). Horizontal or vertical optokinetic stimulation activates visual motion-sensitive ocular-motor and vestibular cortex areas with right hemispheric dominance. An fMRI studyBrain 12114791495.

DieterichM.BenseS.StephanT.YousryT. A.BrandtT. (2003). fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixationExp Brain Res. 148117127.

DukelowS. P.DeSouzaJ. F.CulhamJ. C.Van den BergA. V.MenonR. S. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movementsJ. Neurophysiol. 8619912000.

FischerE.BülthoffH. H.LogothetisN. K.BartelsA. (2012). Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MSTCereb. Cortex 22865876.

FrankS. M.WirthA. M.GreenleeM. W. (2016). Visual–vestibular processing in the human Sylvian fissureJ. Neurophysiol. 116263271.

FurlanM.WannJ. P.SmithA. T. (2013). A representation of changing heading direction in human cortical areas pVIP and CSvCereb. Cortex 2428482858.

GibsonJ. J. (1966). The Senses Considered as Perceptual Systems. Houghton MifflinBoston, MA, USA.

HelmholtzH. (1867). Handbuch der Physiologischen OptikVol. 9. Leopold VossLeipzig, Germany.

HowardI. (1982). Human Visual Orientation. WileyNew York, NY, USA.

HukA. C.HeegerD. J. (2002). Pattern-motion responses in human visual cortexNat. Neurosci. 57275.

KovácsG.RaabeM.GreenleeM. W. (2008). Neural correlates of visually induced self-motion illusion in depthCereb. Cortex 1817791787.

LeeJ. H.DurandR.GradinaruV.ZhangF.GoshenI.KimD. S.DeisserothK. (2010). Global and local fMRI signals driven by neurons defined optogenetically by type and wiringNature 465(7299) 788792.

LepecqJ. C.De WaeleC.Mertz-JosseS.TeyssèdreC.HuyP. T.BaudonnièreP. M.VidalP. P. (2006). Galvanic vestibular stimulation modifies vection paths in healthy subjectsJ. Neurophysiol. 9531993207.

LishmanJ. R.LeeD. N. (1973). The autonomy of visual kinaesthesisPerception 2287294.

LogothetisN. K. (2008). What we can do and what we cannot do with fMRINature 453(7197) 869878.

MachE. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. EngelmannLeipzig, Germany.

MiyazakiJ.YamamotoH.IchimuraY.YamashiroH.MuraseT.YamamotoT.HiguchiT. (2015). Inter-hemispheric desynchronization of the human MT+ during visually induced motion sicknessExp Brain Res. 23324212431.

NishiikeS.NakagawaS.NakagawaA.UnoA.TonoikeM.TakedaN.KuboT. (2002). Magnetic cortical responses evoked by visual linear forward accelerationNeuroreport 1318051808.

OmanC. H. (1982). A heuristic mathematical model for the dynamics of sensory conflict and motion sicknessActa Oto-Laryngologica 94444.

PalmisanoS.GillamB. J.BlackburnS. G. (2000). Global-perspective jitter improves vection in central visionPerception 295767.

PalmisanoS.AllisonR. S.PekinF. (2008). Accelerating self-motion displays produce more compelling vection in depthPerception 372233.

PalmisanoS.AllisonR. S.KimJ.BonatoF. (2011). Simulated viewpoint jitter shakes sensory conflict accounts of vectionSee. Perceiv. 24173200.

PalmisanoS.AllisonR. S.SchiraM. M.BarryR. J. (2015). Future challenges for vection research: definitions, functional significance, measures and neural basesFront. Psychol. 6193. DOI:10.3389/fpsyg.2015.00193.

PitzalisS.SerenoM. I.CommitteriG.FattoriP.GalatiG.PatriaF.GallettiC. (2010). Human V6: the medial motion areaCereb. Cortex 20411424.

PitzalisS.SdoiaS.BultriniA.CommitteriG.Di RussoF.FattoriP.GallettiC.GalatiG. (2013). Selectivity to translational egomotion in human brain motion areasPLoS One 8e60241. DOI:10.1371/journal.pone.0060241.

PrevicF. H.ErcolineW. R. (Eds) (2004). Spatial Disorientation in AviationVol. 203. AIAARewston, VA, USA.

ReasonJ. T. (1978). Motion sickness adaptation: a neural mismatch modelR. Soc. Med. 71819829.

RobertsD. C.MarcelliV.GillenJ. S.CareyJ. P.Della SantinaC. C.ZeeD. S. (2011). MRI magnetic field stimulates rotational sensors of the brainCurr. Biol. 2116351640.

SmithA. T.WallM. B.ThiloK. V. (2012). Vestibular inputs to human motion-sensitive visual cortexCereb. Cortex 2210681077. DOI:10.1093/cercor/bhr179.

StevensS. S. (1959). Cross-modality validation of subjective scales for loudness, vibration, and electric shockJ. Exp. Psychol. 57201209.

TootellR. B.ReppasJ. B.KwongK. K.MalachR.BornR. T.BradyT. J.BelliveauJ. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imagingJ. Neurosci. 1532153230.

UesakiM.AshidaH. (2015). Optic-flow selective cortical sensory regions associated with self-reported states of vectionFront. Psychol. 6755. DOI:10.3389/fpsyg.2015.00775.

WadaA.SakanoY.AndoH. (2016). Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulationFront. Psychol. 7309. DOI:10.3389/fpsyg.2016.00309.

WaldvogelD.Van GelderenP.MuellbacherW.ZiemannU.ImmischI.HallettM. (2000). The relative metabolic demand of inhibition and excitationNature 406(6799) 995998.

WallM. B.SmithA. T. (2008). The representation of egomotion in the human brainCurr. Biol. 18191194.

WatsonJ. D.MyersR.FrackowiakR. S.HajnalJ. V.WoodsR. P.MazziottaJ. C.ZekiS. (1993). Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imagingCereb. Cortex 37994.

WolbersT.WienerJ. M.MallotH. A.BüchelC. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humansJ. Neurosci. 2794089416.

WolbersT.HegartyM.BüchelC.LoomisJ. M. (2008). Spatial updating: how the brain keeps track of changing object locations during observer motionNat. Neurosci. 1112231230.

WorsleyK. J.EvansA. C.MarrettS.NeelinP. (1992). A three-dimensional statistical analysis for CBF activation studies in human brainJ. Cereb. Blood Flow Metab. 12900918.

ZekiS.WatsonJ. D.LueckC. J.FristonK. J.KennardC.FrackowiakR. S. (1991). A direct demonstration of functional specialization in human visual cortexJ. Neurosci. 11641649.

Figures

  • View in gallery

    Schematic representations of the displays used. Top-left image represents the trajectories of the different spherical objects moving past the observer in the smooth global optic flow (Condition #1 — simulates purely forward self-motion). Top-right image represents trajectories of the spheres in the oscillating global optic flow (Condition #2). Bottom-left image represents the segmented and randomly re-ordered version used for the smooth local optic flow condition (Condition #3). Bottom-right image shows the segmented and randomly re-ordered version used for the oscillating local motion condition (Condition #4).

  • View in gallery

    Mean vection magnitude estimates averaged across observers in each condition for baseline (blue) and MRI (red) sessions. Error bars indicate standard error of the mean.

  • View in gallery

    Mean vection onset latency averaged across observers in each condition during baseline sessions. Error bars indicate standard error of the mean.

  • View in gallery

    BOLD activity for the oscillating global > smooth global contrast in CSv for subject 1. The blue outlines indicate an approximation of area CSv in subject 1. Above threshold BOLD activity is represented by the red-yellow colour gradient and ranges from Z=2.3 (red) to 5.8 (yellow).

  • View in gallery

    CSv activity for the global motion > local motion contrast for subject 6. The blue outlines indicate an approximation of area CSv in the subject. Above threshold BOLD activity is represented by the red–yellow colour gradient and ranges from Z=2.3 (red) to 4.0 (yellow).

  • View in gallery

    PIVC/PIC activity for the oscillating global > smooth global contrast in subject 2. The blue outline represents approximate location of participant’s PIVC/PIC. Above threshold BOLD activity is represented by the red–yellow colour gradient and ranges from Z=2.3 (red) to 3.4 (yellow).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 36 36 14
Full Text Views 71 71 28
PDF Downloads 13 13 1
EPUB Downloads 2 2 0