The Number of Stimulus-Onset Asynchronies Affects the Perception of the Sound-Induced Flash Illusion in Young and Older Adults

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The sound-induced flash illusion is a multisensory illusion occurring when one flash is presented with two beeps and perceived as two flashes. Younger individuals are largely susceptible to the illusion when the stimulus onset asynchrony between the first and the second beep falls within the temporal window of integration, but the susceptibility falls dramatically outside of this short temporal range. Older individuals, in particular older adults prone to falling and/or mild cognitive impairment, show an extended susceptibility to the illusion. This suggests that they have inefficient multisensory integration, particularly in the temporal domain. In the present study, we investigated the reliability of the illusion across younger and older people, guided by the hypothesis that the experimental context, i.e., exposure to a wider or smaller number of stimulus onset asynchronies, would modify the intra-personal susceptibility to the illusion at shorter asynchronies vs. longer asynchronies, likely due to the gathering of model evidence based on Bayesian inference. We tested 22 young adults and 29 older adults and verified these hypotheses. Both groups showed higher susceptibility to the illusion when exposed to a smaller range of asynchronies, but only for longer ones, not within the 100 ms window. We discuss the theoretical implications in terms of online perceptual learning and practical implications in terms of standardisation of the experimental context when attempting to find normative values.

Multisensory Research

A Journal of Scientific Research on All Aspects of Multisensory Processing



BedardG.Barnett-CowanM. (2016). Impaired timing of audiovisual events in the elderly, Exp. Brain Res. 234, 331340.

ChanJ. S.KaiserJ.BrandlM.MaturaS.PrvulovicD.HoganM. J.NaumerM. J. (2015). Expanded temporal binding windows in people with mild cognitive impairment, Curr. Alzheimer Res. 12, 6168.

CuppiniC.MagossoE.BologniniN.VallarG.UrsinoM. (2014). A neurocomputational analysis of the sound-induced flash illusion, NeuroImage 92, 248266.

de GelderB.BertelsonP. (2003). Multisensory integration, perception and ecological validity, Trends Cogn. Sci. 7, 460467.

DeLossD. J.AndersenG. J. (2015). Aging, spatial disparity, and the sound-induced flash illusion, PLoS One 10, e0143773. DOI:10.1371/journal.pone.0143773.

DeLossD. J.PierceR. S.AndersenG. J. (2013). Multisensory integration, aging, and the sound-induced flash illusion, Psychol. Aging 28, 802812.

DiederichA.ColoniusH. (2012). Modeling multisensory processes in saccadic responses: time-window-of-integration model, in: The Neural Bases of Multisensory Processes, MurrayM. M.WallaceM. (Eds), pp.  253276. CRC Press, Boca Raton, FL, USA.

DiederichA.ColoniusH.SchomburgA. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration model, Neuropsychologia 46, 25562562.

DiederichA.ColoniusH.KandilF. I. (2016). Prior knowledge of spatiotemporal configuration facilitates crossmodal saccadic response, Exp. Brain Res. 234, 20592076.

Foss-FeigJ. H.KwakyeL. D.CascioC. J.BurnetteC. P.KadivarH.StoneW.WallaceM. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders, Exp. Brain Res. 203, 381389.

FujisakiW.ShimojoS.KashinoM.NishidaS. Y. (2004). Recalibration of audiovisual simultaneity, Nat. Neurosci. 7, 773778.

GrohJ. M.Werner-ReissU. (2002). Visual and auditory integration, in: Encyclopedia of the Human Brain, RamachandranV. S. (Ed.), pp.  739752. Academic Press, New York, NY, USA.

HarveyC.Van der BurgE.AlaisD. (2014). Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally, Brain Res. 1585, 120130.

KayserC.ShamsL. (2015). Multisensory causal inference in the brain, PLoS Biol. 13, e1002075. DOI:10.1371/journal.pbio.1002075.

LupoJ.Barnett-CowanM. (2017). Perceived timing of a postural perturbation, Neurosci. Lett. 639, 167172.

MacmillanN. A.CreelmanC. D. (1991). Detection Theory: a User’s Guide. Cambridge University Press, Cambridge, UK.

McGovernD. P.RoudaiaE.StapletonJ.McGinnityT. M.NewellF. N. (2014). The sound-induced flash illusion reveals dissociable age-related effects in multisensory integration, Front. Aging Neurosci. 6, 250. DOI:10.3389/fnagi.2014.00250.

MerrimanN. A.WhyattC.SettiA.CraigC.NewellF. N. (2015). Successful balance training is associated with improved multisensory function in fall-prone older adults, Comput. Hum. Behav. 45, 192203.

MishraJ.MartinezA.SejnowskiT. J.HillyardS. A. (2007). Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion, J. Neurosci. 27, 41204131.

MolloyD. W.StandishT. I. (1997). A guide to the standardized mini-mental state examination, Int. Psychogeriatr. 9(Suppl. 1), 8794.

PowersA. R.IIIHillockA. R.WallaceM. T. (2009). Perceptual training narrows the temporal window of multisensory binding, J. Neurosci. 29, 1226512274.

PowersA. R.IIIHillock-DunnA.WallaceM. T. (2016). Generalization of multisensory perceptual learning, Sci. Rep. 6, 23374. DOI:10.1038/srep23374.

RosenthalO.ShimojoS.ShamsL. (2009). Sound-induced flash illusion is resistant to feedback training, Brain Topogr. 21, 185192.

SettiA.ChanJ. S. (2011). Familiarity of objects affects susceptibility to the sound- induced flash, Neurosci. Lett. 492, 1922.

SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 2209, 375384. DOI:10.1007/s00221-011-2560-z.

SettiA.StapletonJ.LeahyD.WalshC.KennyR. A.NewellF. N. (2014). Improving the efficiency of multisensory integration in older adults: audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion, Neuropsychologia 61, 259268.

ShamsL. (2012). Early integration and Bayesian causal inference in multisensory perception, in: The Neural Bases of Multisensory Processes, MurrayM. M.WallaceM. (Eds), pp.  217231. CRC Press, Boca Raton, FL, USA.

ShamsL.BeierholmU. R. (2010). Causal inference in perception, Trends Cogn. Sci. 14, 425432.

ShamsL.KamitaniY.ShimojoS. (2000). Illusions: what you see is what you hear, Nature 408(6814), 788. DOI:10.1038/35048669.

ShamsL.KamitaniY.ShimojoS. (2002). Visual illusion induced by sound, Cogn. Brain Res. 14, 147152.

ShamsL.MaW. J.BeierholmU. R. (2005a). Sound-induced flash illusion as an optimal percept, Neuroreport 16, 19231927.

ShamsL.IwakiS.ChawlaA.BhattacharyaJ. (2005b). Early modulation of visual cortex by sound: an MEG study, Neurosci. Lett. 378, 7681.

StapletonJ.SettiA.DohenyE. P.KennyR. A.NewellF. N. (2014). A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adults, Exp. Brain Res. 232, 423434.

StevensonR. A.WallaceM. T. (2013). Multisensory temporal integration: task and stimulus dependencies, Exp. Brain Res. 227, 249261.

StevensonR. A.SegersM.FerberS.BarenseM. D.CamarataS.WallaceM. T. (2015). Keeping time in the brain: autism spectrum disorder and audiovisual temporal processing, Autism Res. 9, 720738.

Van der BurgE.AlaisD.CassJ. (2013). Rapid recalibration to audiovisual asynchrony, J. Neurosci. 33, 1463314637.

VanesL. D.WhiteT. P.WigtonR. L.JoyceD.CollierT.ShergillS. S. (2016). Reduced susceptibility to the sound-induced flash fusion illusion in schizophrenia, Psychiat. Res. 245, 5865.

VatakisA.SpenceC. (2008). Evaluating the influence of the ‘unity assumption’on the temporal perception of realistic audiovisual stimuli, Acta Psychol. 127, 1223. GelderB. (2000). Crossmodal integration: a good fit is no criterion, Trends Cogn. Sci. 4, 3738. GelderB. (2004). Temporal ventriloquism: sound modulates the flash–lag effect, J. Exp. Psychol. Hum. Percept. Perform. 30, 513518. DOI:10.1037/0096-1523.30.3.513.

VroomenJ.KeetelsM. (2010). Perception of intersensory synchrony: a tutorial review, Atten. Percept. Psychophys. 72, 871884.


  • Mean proportion correct in the unimodal control conditions for young and older adults. This figure represents only the SOAs that were presented in both the ‘short’ and ‘long’ conditions. The error bars represent the standard error of the means.

    View in gallery
  • Mean proportion correct in the multisensory control conditions for young and older adults. This figure represents only the SOAs that were presented in both the ‘short’ and ‘long’ conditions. The error bars represent the standard error of the means.

    View in gallery
  • Mean d for the 2-beeps/1-flash for young and older adults across all SOAs. Note that five SOAs are presented for the ‘long’ condition, while only the three available SOAs are presented for the ‘short’ condition.

    View in gallery
  • Interaction between Duration and SOA in the 2-beeps/1-flash, vision-lead condition. Participants were significantly more accurate in the ‘long’ condition compared to the ‘short’, when the SOAs were 150 ms or 230 ms.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 9 9 9
Full Text Views 8 8 6
PDF Downloads 2 2 2
EPUB Downloads 1 1 0