Shifts in Maximum Audiovisual Integration with Age

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Listeners attempting to understand speech in noisy environments rely on visual and auditory processes, typically referred to as audiovisual processing. Noise corrupts the auditory speech signal and listeners naturally leverage visual cues from the talker’s face in an attempt to interpret the degraded auditory signal. Studies of speech intelligibility in noise show that the maximum improvement in speech recognition performance (i.e., maximum visual enhancement or VEmax), derived from seeing an interlocutor’s face, is invariant with age. Several studies have reported that VEmax is typically associated with a signal-to-noise (SNR) of −12 dB; however, few studies have systematically investigated whether the SNR associated with VEmax changes with age. We investigated if VEmax changes as a function of age, whether the SNR at VEmax changes as a function of age, and what perceptual/cognitive abilities account for or mediate such relationships. We measured VEmax on a nongeriatric adult sample (N=64) ranging in age from 20 to 59 years old. We found that VEmax was age-invariant, replicating earlier studies. No perceptual/cognitive measures predicted VEmax, most likely due to limited variance in VEmax scores. Importantly, we found that the SNR at VEmax shifts toward higher (quieter) SNR levels with increasing age; however, this relationship is partially mediated by working memory capacity, where those with larger working memory capacities (WMCs) can identify speech under lower (louder) SNR levels than their age equivalents with smaller WMCs. The current study is the first to report that individual differences in WMC partially mediate the age-related shift in SNR at VEmax.

Multisensory Research

A Journal of Scientific Research on All Aspects of Multisensory Processing

Sections

References

AkeroydM. A. (2008). Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults, Int. J. Audiol. 47, S53S71.

AlsiusA.WayneR. V.ParéM.MunhallK. G. (2016). High visual resolution matters in audiovisual speech perception, but only for some, Atten. Percept. Psychophys. 78, 14721487.

BallK.OwsleyC. (1992). The useful field of view test: a new technique for evaluating age-related declines in visual function, J. Am. Optom. Assoc. 63, 7179.

BallK. K.BeardB. L.RoenkerD. L.MillerR. L.GriggsD. S. (1988). Age and visual search: expanding the useful field of view, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 5, 22102219.

BergmanM.BlumenfeldV. G.CascardoD.DashB.LevittH.MarguliesM. K. (1976). Age-related decrement in hearing for speech. Sampling and longitudinal studies, J. Gerontol. 31, 533538.

BesserJ.KoelewijnT.ZekveldA. A.KramerS. E.FestenJ. M. (2013). How linguistic closure and verbal working memory relate to speech recognition in noise — a review, Trends Amplif. 17, 7593.

Committee on Hearing, Bioacoustics, and Biomechanics (1988). Speech understanding and aging, J. Acoust. Soc. Am. 83, 859895.

CorenS. (1989). Summarizing pure-tone hearing thresholds: the equipollence of components of the audiogram, Bull. Psychon. Soc. 27, 4244.

CosattoE.GrafH. P. (2000). Photo-realistic talking-heads from image samples, IEEE Trans. Multimedia 2, 152163.

DubnoJ. R.DirksD. D.MorganD. E. (1984). Effects of age and mild hearing loss on speech recognition in noise, J. Acoust. Soc. Am. 76, 8796.

EdwardsJ. D.RossL. A.WadleyV. G.ClayO. J.CroweM.RoenkerD. L.BallK. K. (2006). The useful field of view test: normative data for older adults, Arch. Clin. Neuropsychol. 21, 275286.

EllisR. J.MunroK. J. (2013). Does cognitive function predict frequency compressed speech recognition in listeners with normal hearing and normal cognition? Int. J. Audiol. 52, 1422.

EngleR. W. (2002). Working memory capacity as executive attention, Curr. Dir. Psychol. Sci. 11, 1923.

ErberN. P. (1979). Auditory-visual perception of speech with reduced optical clarity, J. Speech Hear. Res. 22, 212223.

FerrisF. L.3rdKassoffA.BresnickG. H.BaileyI. (1982). New visual acuity charts for clinical research, Am. J. Ophthalmol. 94, 9196.

FieldA. (2013). Discovering Statistics Using IBM SPSS Statistics, 4th edn. SAGE Publications, London, UK.

FrancisA. L.NusbaumH. C. (2009). Effects of intelligibility on working memory demand for speech perception, Atten. Percept. Psychophys. 71, 13601374.

Gordon-SalantS. (2005). Hearing loss and aging: new research findings and clinical implications, J. Rehabil. Res. Dev. 42, 924.

GrantK. W.SeitzP. F. (1998). Measures of auditory-visual integration in nonsense syllabes and sentences, J. Acoust. Soc. Am. 104, 24382450.

HugenschmidtC. E.MozolicJ. L.LaurientiP. J. (2009). Suppression of multisensory integration by modality-specific attention in aging, Neuroreport 20, 349353.

HumesL. E. (2007). The contributions of audibility and cognitive factors to the benefit provided by amplified speech to older adults, J. Am. Acad. Audiol. 18, 590603.

HumesL. E. (2008). Aging and speech communication, ASHA Lead. 13, 1033.

HumesL. E. (2015). Research forum on changes in sensory perception in middle-aged adults: a summary of a special session at hearing across the lifespan (HEAL) 2014, Am. J. Audiol. 24, 79.

Institute of Medicine (2008). Retooling for an Aging America: Building the Health Care Workforce, 1st edn. The National Academies Press, Washington, DC, USA.

JanseE. (2012). A non-auditory measure of interference predicts distraction by competing speech in older adults, Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 19, 741758.

JanseE.JesseA. (2014). Working memory affects older adults’ use of context in spoken-word recognition, Q. J. Exp. Psychol. 67, 18421862.

JansenS.ChaparroA.DownsD.PalmerE.KeeblerJ. (2013). Visual and cognitive predictors of visual enhancement in noisy listening conditions, in: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Diego, CA, USA, pp.  11991203.

JansenS. D. (2016). Working memory capacity modulates the effects of noise on speech recognition for non-geriatric adults. PhD Thesis, Wichita State University, Wichita, KS, USA. Available at http://hdl.handle.net/10057/12638 (Accessed: 1 December 2016).

JergerJ. (1992). Can age-related decline in speech understanding be explained by peripheral hearing loss? J. Am. Acad. Audiol. 3, 3338.

KillionM. C.VillchurE. (1993). Kessler was right-partly: but SIN test shows some aids improve hearing in noise, Hear. J. 46, 3134.

KjellbergA.LjungR.HallmanD. (2008). Recall of words heard in noise, Appl. Cogn. Psychol. 22, 10881098.

KutzJ. K.CampbellK. C. M.MullinG. (2015). Audiology Pure-Tone Testing. Available online at http://emedicine.medscape.com/article/1822962-overview (accessed January 1, 2016).

LegaultI.GagnéJ. P.RhoualemW.Anderson-GosselinP. (2010). The effects of blurred vision on auditory-visual speech perception in younger and older adults, Int. J. Audiol. 49, 904911.

LiuX. Z.YanD. (2007). Ageing and hearing loss, J. Pathol. 211, 188197.

LoebachJ. L.AltieriN.PisoniD. B. (2012a). Lip reading ability is related to visual attention in normal hearing subjects, unpublished poster presentation at: http://pages.stolaf.edu/loebach/files/2013/01/Loebachetal-ARO-2012.pdf.

LoebachJ. L.BurtonJ.SennottB.PhillipsS.StorkC. (2012b). Lip reading ability is influenced by visual attention, unpublished poster presentation at: http://pages.stolaf.edu/loebach/files/2013/01/Loebachetal-MPA-2012.pdf.

MaW. J.ZhouX.RossL. A.FoxeJ. J.ParraL. C. (2009). Lip-reading aids word recognition most in moderate noise: a Bayesian explanation using high-dimensional feature space, PLoS One 4, e4638. DOI:10.1371/journal.pone.0004638.

MacLeodA.SummerfieldQ. (1990). A procedure for measuring auditory and audio-visual speech-reception thresholds for sentences in noise: rationale, evaluation, and recommendations for use, Br. J. Audiol. 24, 2943.

MartinJ. S.JergerJ. F. (2005). Some effects of aging on central auditory processing, J. Rehabil. Res. Dev. 42, 2544.

McCoyS. L.TunP. A.CoxL. C.ColangeloM.StewartR. A.WingfieldA. (2005). Hearing loss and perceptual effort: downstream effects on older adults’ memory for speech, Q. J. Exp. Psychol. 58, 2233.

MorrisN. L. (2011). Effects of simulated catracts on speechreading. PhD Thesis, Wichita State University, Wichita, KS, USA. Available at http://hdl.handle.net/10057/5060 (Accessed: 27 February 2012).

MorrisN. L.ChaparroA.DownsD.WoodJ. M. (2012). Effects of simulated cataracts on speech intelligibility, Vision Res. 66, 4954.

MukariS. Z. M.WahatN. H. A.MazlanR. (2014). Effects of ageing and hearing thresholds on speech perception in quiet and in noise perceived in different locations, Korean J. Audiol. 18, 112118.

MunhallK. G.JonesJ. A.CallanD. E.KuratateT.Vatikiotis-BatesonE. (2004a). Visual prosody and speech intelligibility: head movement improves auditory speech perception, Psychol. Sci. 15, 133137.

MunhallK. G.KroosC.JozanG.Vatikiotis-BatesonE. (2004b). Spatial frequency requirements for audiovisual speech perception, Percept. Psychophys. 66, 574583.

MurphyD. R.CraikF. I.LiK. Z.SchneiderB. A. (2000). Comparing the effects of aging and background noise on short-term memory performance, Psychol. Aging 15, 323334.

NarinesinghC.WanM.GoltzH. C.ChandrakumarM.WongA. M. (2014). Audiovisual perception in adults with amblyopia: a study using the McGurk effect, Invest. Ophthalmol. Vis. Sci. 55, 31583164.

PelliD. G.RobsonJ. G.WilkinsA. J. (1988). The design of a new letter chart for measuring contrast sensitivity, Clin. Vision Sci. 2, 187199.

PutzarL.GoerendtI.LangeK.RöslerF.RöderB. (2007). Early visual deprivation impairs multisensory interactions in humans, Nat. Neurosci. 10, 12431245.

PutzarL.GoerendtI.HeedT.RichardG.BüchelC.RöderB. (2010a). The neural basis of lip-reading capabilities is altered by early visual deprivation, Neuropsychologia 48, 21582166.

PutzarL.HöttingK.RöderB. (2010b). Early visual deprivation affects the development of face recognition and of audio-visual speech perception, Restor. Neurol. Neurosci. 28, 251257.

ReitanR. M. (1958). Validity of the trail making test as an indicator of organic brain damage, Percept. Mot. Skills 8, 271276.

ReitanR. M. (1992). Trail Making Test: Manual for Administration and Scoring. Reitan Neuropsychology Laboratory, Tucson, AZ, USA.

RomanoP. E.BerlowS. (1974). Vision requirements for lip reading, Am. Ann. Deaf 119, 383386.

RönnbergJ.ArlingerS.LyxellB.KinneforsC. (1989). Visual evoked potentials: relation to adult speechreading and cognitive function, J. Speech Hear. Res. 32, 725735.

RönnbergJ.RudnerM.LunnerT.ZekveldA. A. (2010). When cognition kicks in: working memory and speech understanding in noise, Noise Health 12, 263269.

RosenblumL. D.SaldañaH. M. (1996). An audiovisual test of kinematic primitives for visual speech perception, J. Exp. Psychol. Hum. Percept. Perform. 22, 318331.

RossJ. E.ClarkeD. D.BronA. J. (1985). Effect of age on contrast sensitivity function: uniocular and binocular findings, Br. J. Ophthalmol. 69, 5156.

RossL. A.Saint-AmourD.LeavittV. M.JavittD. C.FoxeJ. J. (2007). Do you see what I am saying? Exploring visual enhancement of speech comprehension in noisy environments, Cereb. Cortex 17, 11471153.

RossL. A.MolholmS.BlancoD.Gomez-RamirezM.Saint-AmourD.FoxeJ. J. (2011). The development of multisensory speech perception continues into the late childhood years, Eur. J. Neurosci. 33, 23292337.

SchneiderB. A.DanemanM.Pichora-FullerM. K. (2002). Listening in aging adults: from discourse comprehension to psychoacoustics, Can. J. Exp. Psychol. 56, 139152.

SennottB.StraehleyI.MorkD.CoppalleR.LoebachJ. L. (2011). Lip-reading ability in normal hearing listeners. Unpublished poster presentation at: https://www.researchgate.net/profile/Renaud_Coppalle/publication/265161411_Lip-reading_ability_in_normal_hearing_listeners/links/5400b8e60cf2bba34c1a8c6b.pdf.

SommersM. S.Tye-MurrayN.SpeharB. (2005). Auditory-visual speech perception and auditory-visual enhancement in normal-hearing younger and older adults, Ear Hear. 26, 263275.

StevensonR. A.NelmsC. E.BaumS. H.ZurkovskyL.BarenseM. D.NewhouseP. A.WallaceM. T. (2015). Deficits in audiovisual speech perception in normal aging emerge at the level of whole-word recognition, Neurobiol. Aging 36, 283291.

SumbyW. H.PollackI. (1954). Visual contribution to speech intelligibility in noise, J. Acoust. Soc. Am. 26, 212215.

TunP. A.O’KaneG.WingfieldA. (2002). Distraction by competing speech in young and older adult listeners, Psychol. Aging 17, 453467.

Tye-MurrayN.SommersM.SpeharB.MyersonJ.HaleS.RoseN. S. (2008). Auditory-visual discourse comprehension by older and young adults in favorable and unfavorable conditions, Int. J. Audiol. 47, S31S37.

Tye-MurrayN.SepharB.MyersonJ.HaleS.SommersM. (2016). Lipreading and audiovisual speech recognition across the adult lifespan: implications for audiovisual integration, Psychol. Aging 31, 380389.

van BelleG. (2002). Statistical Rules of Thumb, 1st edn. Wiley, New York, NY, USA.

WechslerD. (1981). Wechsler Adult Intelligence Scale — Revised. Psychological Corporation, New York, NY, USA.

WilsonA. H.AlsiusA.ParéM.MunhallK. G. (2016). Spatial frequency requirements and gaze strategy in visual-only and audiovisual speech perception, J. Speech Lang. Hear. Res. 59, 601615.

WingfieldA.TunP. A.McCoyS. L. (2005). Hearing loss in older adulthood: what it is and how it interacts with cognitive performance, Curr. Dir. Psychol. Sci. 14, 144148.

YehiaH. C.KuratateT.Vatikiotis-BatesonE. (2002). Linking facial animation, head motion and speech acoustics, J. Phon. 30, 555568.

ZekveldA. A.KramerS. E.FestenJ. M. (2011). Cognitive load during speech perception in noise: the influence of age, hearing loss, and cognition on the pupil response, Ear Hear. 32, 498510.

Figures

  • Speechreading task conditions. Auditory–visual condition (AV) on the left and auditory-only (AO) condition on the right. Taken from Morris (2011).

    View in gallery
  • Participant 66’s visual enhancement (y-axis) and signal-to-noise ratio (x-axis) data fit with polynomial (solid line) and Gaussian (dotted line) functions.

    View in gallery
  • Simple linear regression with age (x-axis) as the predictor variable and VEmax (y-axis) as the dependent variable.

    View in gallery
  • Average VEmax (+/ SE) by age group.

    View in gallery
  • Simple linear regression with age (x-axis) as the predictor variable and SNR at VEmax (y-axis) as the dependent variable.

    View in gallery
  • Average SNR (dB) at VEmax (+/ SE) by age group.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 3 3 3
Full Text Views 8 8 6
PDF Downloads 1 1 1
EPUB Downloads 2 2 1