Aging Impairs Audiovisual Facilitation of Object Motion Within Self-Motion

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The presence of a moving sound has been shown to facilitate the detection of an independently moving visual target embedded among an array of identical moving objects simulating forward self-motion (Calabro et al., Proc. R. Soc. B, 2011). Given that the perception of object motion within self-motion declines with aging, we investigated whether older adults can also benefit from the presence of a congruent dynamic sound when detecting object motion within self-motion. Visual stimuli consisted of nine identical spheres randomly distributed inside a virtual rectangular prism. For 1 s, all the spheres expanded outward simulating forward observer translation at a constant speed. One of the spheres (the target) had independent motion either approaching or moving away from the observer at three different speeds. In the visual condition, stimuli contained no sound. In the audiovisual condition, the visual stimulus was accompanied by a broadband noise sound co-localized with the target, whose loudness increased or decreased congruent with the target’s direction. Participants reported which of the spheres had independent motion. Younger participants showed higher target detection accuracy in the audiovisual compared to the visual condition at the slowest speed level. Older participants showed overall poorer target detection accuracy than the younger participants, but the presence of the sound had no effect on older participants’ target detection accuracy at either speed level. These results indicate that aging may impair cross-modal integration in some contexts. Potential reasons for the absence of auditory facilitation in older adults are discussed.

Aging Impairs Audiovisual Facilitation of Object Motion Within Self-Motion

in Multisensory Research



AlaisD.NewellF. N.MamassianP. (2010). Multisensory processing in review: from physiology to behaviourSeeing Perceiv. 23338.

AllardR.Lagacé-NadonS.FaubertJ. (2013). Feature tracking and agingFront. Psychol. 4427. DOI:10.3389/fpsyg.2013.00427.

AndersenG. J.EnriquezA. (2006). Aging and the detection of observer and moving object collisionsPsychol. Aging 217485.

AtchleyP.AndersenG. J. (1998). The effect of age, retinal eccentricity, and speed on the detection of optic flow componentsPsychol. Aging 13297308.

BakemanR. (2005). Recommended effect size statistics for repeated measures designsBehav. Res. Meth. 37379384.

BedardG.Barnett-CowanM. (2015). Impaired timing of audiovisual events in the elderlyExp. Brain Res. 234331340.

BennettP. J.SekulerR.SekulerA. B. (2007). The effects of aging on motion detection and direction identificationVision Res. 47799809.

BerardJ. R.FungJ.McFadyenB. J.LamontagneA. (2009). Aging affects the ability to use optic flow in the control of heading during locomotionExp. Brain Res. 194183190.

BillinoJ.BremmerF.GegenfurtnerK. R. (2008). Differential aging of motion processing mechanisms: evidence against general perceptual declineVision Res. 4812541261.

BrainardD. H. (1997). The psychophysics toolboxSpat. Vis. 10433436.

ButlerJ. S.SmithS. T.CamposJ. L.BülthoffH. H. (2010). Bayesian integration of visual and vestibular signals for headingJ. Vis. 1023.

ButlerJ. S.CamposJ. L.BülthoffH. H.SmithS. T. (2011). The role of stereo vision in visual-vestibular integrationSeeing Perceiv. 24453470.

CalabroF. J.VainaL. M. (2012). Interaction of cortical networks mediating object motion detection by moving observersExp. Brain Res. 221177189.

CalabroF. J.Soto-FaracoS.VainaL. M. (2011). Acoustic facilitation of object movement detection during self-motionProc. R. Soc. B Biol. Sci. 27828402847.

DeLuciaP. R.Kathryn BleckleyM.MeyerL. E.BushJ. M. (2003). Judgments about collision in younger and older driversTransp. Res. Part F Traffic Psychol. Behav. 66380.

DiaconescuA. O.HasherL.McIntoshA. R. (2012). Visual dominance and multisensory integration changes with ageNeuroImage 65C152166.

DiederichA.ColoniusH.SchomburgA. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration modelNeuropsychologia 4625562562.

DommesA.CavalloV. (2011). The role of perceptual, cognitive, and motor abilities in street-crossing decisions of young and older pedestriansOphthalmic Physiol. Opt. 31292301.

DommesA.CavalloV.OxleyJ. (2013). Functional declines as predictors of risky street-crossing decisions in older pedestriansAccid. Anal. Prev. 59135143.

ErnstM. O.BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashionNature 415(6870) 429433.

FaubertJ. (2002). Visual perception and agingCan. J. Exp. Psychol. 56164176.

FoxJ.WeisbergS. (2011). An {R} Companion to Applied Regression2nd edn. SAGELos Angeles, CA, USA.

FrançoisM.MoriceA. H.BlouinJ.MontagneG. (2011). Age-related decline in sensory processing for locomotion and interceptionNeuroscience 172366378.

FreiherrJ.LundstromJ. N.HabelU.ReetzK.LundströmJ. N.HabelU.ReetzK. (2013). Multisensory integration mechanisms during agingFront. Hum. Neurosci. 7863. DOI:10.3389/fnhum.2013.00863.

HarrisonN. R.WitheridgeS.MakinA.WuergerS. M.PegnaA. J.MeyerG. F. (2015). The effects of stereo disparity on the behavioural and electrophysiological correlates of perception of audio-visual motion in depthNeuropsychologia 785162.

HugenschmidtC.PeifferA.McCoyT. (2009). Preservation of crossmodal selective attention in healthy agingExp. Brain Res. 198273285.

HutchinsonC. V.ArenaA.AllenH. A.LedgewayT. (2012). Psychophysical correlates of global motion processing in the aging visual system: a critical reviewNeurosci. Biobehav. Rev. 3612661272.

JainA.SallyS. L.PapathomasT. V. (2008). Audiovisual short-term influences and aftereffects in motion: examination across three sets of directional pairingsJ. Vis. 8113.

KawachiY.GroveP.SakuraiK. (2014). A single auditory tone alters the perception of multiple visual eventsJ. Vis. 14113.

KitagawaN.IchiharaS. (2002). Hearing visual motion in depthNature 416(6877) 172174.

LakensD. (2017). Equivalence tests: a practical primer for t-tests, correlations, and meta-analysesSoc. Psychol. Personal. Sci. 118.

LappeM.BremmerF.van den BergA. V. (1999). Perception of self-motion from visual flowTrends Cognitive Sci. 3329336.

LaurientiP. J.BurdetteJ. H.MaldjianJ. A.WallaceM. T. (2006). Enhanced multisensory integration in older adultsNeurobiol. Aging 2711551163.

LawrenceM. A. (2015). ez: easy analysis and visualization of factorial experiments R package version 4.3. Available at:

LichM.BremmerF. (2014). Self-motion perception in the elderlyFront. Hum. Neurosci. 8681. DOI:10.3389/fnhum.2014.00681.

LuisC. A.KeeganA. P.MullanM. (2009). Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern USInt. J. Geriatr. Psychiatry 24197201.

MacmillanN. A.CreelmanC. D. (2005). Detection Theory: a User’s Guide2nd edn. Lawrence Erlbaum Associates, Inc.Mahwah, NJ, USA.

MacneilageP. R.ZhangZ.DeangelisG. C.AngelakiD. E. (2012). Vestibular facilitation of optic flow parsingPloS One 7e40264. DOI:10.1371/journal.pone.0040264.

MaguinnessC.SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). The effect of combined sensory and semantic components on audio-visual speech perception in older adultsFront. Aging Neurosci. 319. DOI:10.3389/fnagi.2011.00019.

MahoneyJ. R.LiP. C. C.Oh-ParkM.VergheseJ.HoltzerR. (2011). Multisensory integration across the senses in young and old adultsBrain Res. 14264353.

MapstoneM.LoganD.DuffyC. J. (2006). Cue integration for the perception and control of self-movement in ageing and Alzheimer’s diseaseBrain 12929312944.

McGovernD. P.RoudaiaE.StapletonJ.McGinnityT. M.NewellF. N. (2014). The sound-induced flash illusion reveals dissociable age-related effects in multisensory integrationFront. Aging Neurosci. 6250. DOI:10.3389/fnagi.2014.00250.

MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2012). Multisensory integration and aging in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds). CRC PressBoca Raton, FL, USA.

NasreddineZ. S.PhillipsN. A.BedirianV.CharbonneauS.WhiteheadV.CollinI.CummingsJ. L.ChertkowH. (2005). The Montreal Cognitive Assessment, MoCA: a brief screeningJ. Am. Ger. Soc.695699.

OdegaardB.ShamsL. (2016). The brain’s tendency to bind audiovisual signals is stable but not generalPsychol. Sci. 27583591.

OlejnikS.AlginaJ. (2003). Generalized eta and omega squared statistics: measures of effect size for some common research designsPsychol. Meth. 8434447.

OwsleyC. (2010). Aging and visionVision Res. 5116101622.

PeifferA. M.MozolicJ. L.HugenschmidtC. E.LaurientiP. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection taskNeuroreport 1810771081.

PelliD. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into moviesSpat. Vis. 10437442. DOI:10.1163/156856897X00366.

PilzK. S.BennettP. J.SekulerA. B. (2010). Effects of aging on biological motion discriminationVision Res. 50211219.

R Core Team (2015). R: a Language and Environment for Statistical Computing. R Foundation for Statistical ComputingVienna, Austria.

RamkhalawansinghR.KeshavarzB.HaycockB.ShahabS.CamposJ. L. (2016). Age differences in visual-auditory self-motion perception during a simulated driving taskFront. Psychol. 7595. DOI:10.3389/fpsyg.2016.00595.

RoudaiaE.BennettP. J.SekulerA. B.PilzK. S. (2010). Spatiotemporal properties of apparent motion perception and agingJ. Vis. 105. DOI:10.1167/10.14.5.

RoudaiaE.SekulerA. B.BennettP. J.SekulerR. (2013). Aging and audio-visual and multi-cue integration in motionFront. Psychol. 4267. DOI:10.3389/fpsyg.2013.00267.

RoydenC. S.ConnorsE. M. (2010). The detection of moving objects by moving observersVision Res. 5010141024.

SanabriaD.Soto-FaracoS.ChanJ.SpenceC. (2005). Intramodal perceptual grouping modulates multisensory integration: evidence from the crossmodal dynamic capture taskNeurosci. Lett. 3775964.

SchneiderB. A.Pichora-FullerK.DanemanM. (2010). Effects of senescent changes in audition and cognition on spoken language comprehension in: The Aging Auditory SystemGordon-SalantS.FrisinaR. D.PopperA. N.FayR. R. (Eds) pp.  167210. Springer New YorkNew York, NY, USA.

SchönbrodtF. D.PeruginiM. (2013). At what sample size do correlations stabilize? J. Res. Pers. 47609612.

SchoutenB.TrojeN. F.VroomenJ.VerfaillieK. (2011). The effect of looming and receding sounds on the perceived in-depth orientation of depth-ambiguous biological motion figuresPloS One 6e14725. DOI:10.1371/journal.pone.0014725.

SchuirmannD. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailabilityJ. Pharmacokinet. Biopharm. 15657680.

SekulerR.SekulerA.LauR. (2001). Sound alters visual motion perceptionNature 385(6614) 308.

SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 209375384.

SnowdenR. J.KavanaghE. (2006). Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholdsPerception 35924.

Soto-FaracoS.KingstoneA.SpenceC. (2003). Multisensory contributions to the perception of motionNeuropsychologia 4118471862.

Soto-FaracoS.SpenceC.KingstoneA. (2005). Assessing automaticity in the audiovisual integration of motionActa Psychol. 1187192.

Soto-FaracoS.SpenceC.LloydD.KingstoneA. (2004). Moving multisensory research along: motion perception across sensory modalitiesCurr. Dir. Psychol. Sci. 132932.

SpearP. D. (1993). Neural bases of visual deficits during agingVision Res. 3325892609.

TalsmaD.SenkowskiD.Soto-FaracoS.WoldorffM. G. (2010). The multifaceted interplay between attention and multisensory integrationTrends Cogn. Sci. 14400410.

VainaL. M.CalabroF.LinF.-H.HämäläinenM. S. (2010). Long-range coupling of prefrontal cortex and visual (MT) or polysensory (STP) cortical areas in motion perception in: IFMBE ProceedingsVol. 28 pp.  298301.

Van der BurgE.CassJ.AlaisD. (2014). Window of audio-visual simultaneity is unaffected by spatio-temporal visual clutterSci. Rep. 45098. DOI:10.1038/srep05098.

WarrenP. A.RushtonS. K. (2007). Perception of object trajectory: parsing retinal motion into self and object movement componentsJ. Vis. 7111.

WarrenP. A.RushtonS. K. (2009). Optic flow processing for the assessment of object movement during ego movementCurr. Biol. 1915551560.

WarrenW. H.BlackwellA. W.MorrisM. W. (1989). Age differences in perceiving the direction of self-motion from optical flowJ. Gerontol. 44147153.

WickhamH. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-VerlagNew York, NY, USA.

WilcoxL. M. (2016). Representation and measurement of stereoscopic volumesJ. Vis. 1616. DOI:10.1167/16.11.16.

WinnekeA. H.PhillipsN. A. (2011). Does audiovisual speech offer a fountain of youth for old ears? An event-related brain potential study of age differences in audiovisual speech perceptionPsychol. Aging 26427438.


  • View in gallery

    Schematic of experimental trials and task: Observers viewed nine spheres that moved towards them simulating looming motion for 1 s. One of the nine spheres contained independent motion, either looming or receding relative to the other spheres. In the audiovisual trials, a sound was also presented. The sound was co-localized with the target and its loudness increased for a looming target and decreased for receding target. The response screen required observers to identify the target in a four-alternative forced choice task.

  • View in gallery

    The left panel shows average perceived location (deg) plotted against presented azimuth location for individual participants (dashed lines). The right panel shows total sensitivity (d) for discriminating the sound locations. Small circle and square symbols show individual younger and older participants’ data, respectively. Group averages and their bootstrapped 95% CI are shown in larger symbols offset to the right.

  • View in gallery

    Accuracy (top panels) and response times (bottom panels) for reporting the target object in the visual (black) and audiovisual (grey) conditions for younger (circles) and older (squares) participants across six speeds (negative values correspond to receding motion and positive values correspond to looming motion). Large symbols represent group averages and small symbols show individual data points. Error bars show the bootstrapped 95% CIs of the group averages.

  • View in gallery

    Difference scores of target detection accuracy in the audiovisual and visual conditions are shown for all individual participants for all speeds and directions. Red square symbols show data for receding targets and blue diamond symbols show data for looming targets. Crossbars show group averages and their bootstrapped 95% CI. The grey-scale fill colour (PC V) shows the proportion correct in the visual condition.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 11
Full Text Views 12 12 12
PDF Downloads 2 2 2
EPUB Downloads 0 0 0