Age Effects on Visuo-Haptic Length Discrimination: Evidence for Optimal Integration of Senses in Senior Adults

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Demographic changes in most developed societies have fostered research on functional aging. While cognitive changes have been characterized elaborately, understanding of perceptual aging lacks behind. We investigated age effects on the mechanisms of how multiple sources of sensory information are merged into a common percept. We studied visuo-haptic integration in a length discrimination task. A total of 24 young (20–25 years) and 27 senior (69–77 years) adults compared standard stimuli to appropriate sets of comparison stimuli. Standard stimuli were explored under visual, haptic, or visuo-haptic conditions. The task procedure allowed introducing an intersensory conflict by anamorphic lenses. Comparison stimuli were exclusively explored haptically. We derived psychometric functions for each condition, determining points of subjective equality and discrimination thresholds. We notably evaluated visuo-haptic perception by different models of multisensory processing, i.e., the Maximum-Likelihood-Estimate model of optimal cue integration, a suboptimal integration model, and a cue switching model. Our results support robust visuo-haptic integration across the adult lifespan. We found suboptimal weighted averaging of sensory sources in young adults, however, senior adults exploited differential sensory reliabilities more efficiently to optimize thresholds. Indeed, evaluation of the MLE model indicates that young adults underweighted visual cues by more than 30%; in contrast, visual weights of senior adults deviated only by about 3% from predictions. We suggest that close to optimal multisensory integration might contribute to successful compensation for age-related sensory losses and provides a critical resource. Differentiation between multisensory integration during healthy aging and age-related pathological challenges on the sensory systems awaits further exploration.

Age Effects on Visuo-Haptic Length Discrimination: Evidence for Optimal Integration of Senses in Senior Adults

in Multisensory Research



AlaisD.BurrD. (2004). The ventriloquist effect results from near-optimal bimodal integrationCurr. Biol. 14257262.

AndersenG. J. (2012). Aging and vision: changes in function and performance from optics to perceptionWiley Interdiscip. Rev. Cogn. Sci. 3403410.

AngelakiD. E.GuY.DeAngelisG. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computationCurr. Opin. Neurobiol. 19452458.

AttemsJ.WalkerL.JellingerK. A. (2015). Olfaction and aging: a mini-reviewGerontology 61485490.

BackusB. T.BanksM. S.van EeR.CrowellJ. A. (1999). Horizontal and vertical disparity, eye position, and stereoscopic slant perceptionVision Res. 3911431170.

BainbridgeK. E.WallhagenM. I. (2014). Hearing loss in an aging American population: extent, impact, and managementAnnu. Rev. Public Health 35139152.

BatesS. L.WolbersT. (2014). How cognitive aging affects multisensory integration of navigational cuesNeurobiol. Aging 3527612769.

BeauchampM. S.PasalarS.RoT. (2010). Neural substrates of reliability-weighted visual-tactile multisensory integrationFront. Syst. Neurosci. 425. DOI:10.3389/fnsys.2010.00025.

BocciaM.NemmiF.GuarigliaC. (2014). Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participantsNeuropsychol. Rev. 24236251.

BraemB.HonoréJ.RousseauxM.SajA.CoelloY. (2014). Integration of visual and haptic informations in the perception of the vertical in young and old healthy adults and right brain-damaged patientsNeurophysiol. Clin. 444148.

BrennerE.van DammeW. J. M. (1999). Perceived distance, shape and sizeVision Res. 39975986.

BrescianiJ.-P.DammeierF.ErnstM. O. (2006). Vision and touch are automatically integrated for the perception of sequences of eventsJ. Vis. 6554564.

BülthoffH. H.MallotH. A. (1988). Integration of depth modules: stereo and shadingJ. Opt. Soc. Am. A 517491758.

CabezaR.NybergL.ParkD. C. (2005). Cognitive neuroscience of aging: emergence of a new discipline in: Cognitive Neuroscience of Aging. Linking Cognitive and Cerebral AgingCabezaR.NybergL.ParkD. C. (Eds) pp.  315. Oxford University PressOxford, UK.

CalvertG. A.ThesenT. (2004). Multisensory integration: methodological approaches and emerging principles in the human brainJ. Physiol. 98191205.

CelliniC.KaimL.DrewingK. (2013). Visual and haptic integration in the estimation of softness of deformable objectsi-Perception 4516531.

DavisS. W.DennisN. A.DaselaarS. M.FleckM. S.CabezaR. (2008). Que PASA? The posterior-anterior shift in agingCereb. Cortex 1812011209.

DecorpsJ.SaumetJ. L.SommerP.Sigaudo-RousselD.FromyB. (2014). Effect of ageing on tactile transduction processesAgeing Res. Rev. 139099.

DeLossD. J.PierceR. S.AndersenG. J. (2013). Multisensory integration, aging, and the sound-induced flash illusionPsychol. Aging 28802812.

DiaconescuA. O.HasherL.McIntoshA. R. (2013). Visual dominance and multisensory integration changes with ageNeuroImage 65152166.

DiederichA.ColoniusH.SchomburgA. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration modelNeuropsychologia 4625562562.

DrewingK.ErnstM. O. (2006). Integration of force and position cues for shape perception through active touchBrain Res. 107892100.

ErnstM. O. (2006). A Bayesian view on multimodal cue integration in: Advances in Visual Cognition. Human Body Perception From the Inside outKnoblichG.ThorntonI. M.GrosjeanM.ShiffrarM. (Eds) pp.  105131. Oxford University PressOxford, UK.

ErnstM. O.BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashionNature 415(6870) 429433.

ErnstM. O.BülthoffH. H. (2004). Merging the senses into a robust perceptTrends Cogn. Sci. 8162169.

FreiherrJ.LundströmJ. N.HabelU.ReetzK. (2013). Multisensory integration mechanisms during agingFront. Hum. Neurosci. 7863. DOI:10.3389/fnhum.2013.00863.

GentileG.PetkovaV. I.EhrssonH. H. (2011). Integration of visual and tactile signals from the hand in the human brain: an FMRI studyJ. Neurophysiol. 105910922.

GepshteinS.BurgeJ.ErnstM. O.BanksM. S. (2005). The combination of vision and touch depends on spatial proximityJ. Vis. 510131023.

GiorgioA.SantelliL.TomassiniV.BosnellR.SmithS.De StefanoN.Johansen-BergH. (2010). Age-related changes in grey and white matter structure throughout adulthoodNeuroImage 51943951.

GoriM.Del VivaM.SandiniG.BurrD. C. (2008). Young children do not integrate visual and haptic form informationCurr. Biol. 18694698.

GrefkesC.WeissP. H.ZillesK.FinkG. R. (2002). Crossmodal processing of object features in human anterior intraparietal cortexNeuron 35173184.

Gunning-DixonF. M.BrickmanA. M.ChengJ. C.AlexopoulosG. S. (2009). Aging of cerebral white matter: a review of MRI findingsInt. J. Ger. Psychiat. 24109117.

HaoX.HuangY.LiX.SongY.KongX.WangX.YangZ.ZhenZ.LiuJ. (2016). Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity studyBrain Behav. 6e00572. DOI:10.1002/brb3.572.

HasherL.ZacksR. T. (1988). Working memory, comprehension, and aging: a review and a new view in: Psychology of Learning and MotivationBowerG. H. (Ed.) pp.  193225. Academic PressNew York, NY, USA.

HelbigH. B.ErnstM. O. (2007a). Optimal integration of shape information from vision and touchExp. Brain Res. 179595606.

HelbigH. B.ErnstM. O. (2007b). Knowledge about a common source can promote visual-haptic integrationPerception 3615231533.

HelbigH. B.ErnstM. O.RicciardiE.PietriniP.ThielscherA.MayerK. M.SchultzJ.NoppeneyU. (2012). The neural mechanisms of reliability weighted integration of shape information from vision and touchNeuroImage 6010631072.

HillisJ. M.WattS. J.LandyM. S.BanksM. S. (2004). Slant from texture and disparity cues: optimal cue combinationJ. Vis. 4967992.

HuangJ.GegenfurtnerK. R.SchützA. C.BillinoJ. (2017). Age effects on saccadic adaptation: evidence from different paradigms reveals specific vulnerabilitiesJ. Vis. 179. DOI:10.1167/17.6.9.

JacobsR. A. (1999). Optimal integration of texture and motion cues to depthVision Res. 3936213629.

JacobsR. A. (2002). What determines visual cue reliability? Trends Cogn. Sci. 6345350.

JovanovicB.DrewingK. (2014). The influence of intersensory discrepancy on visuo-haptic integration is similar in 6-year-old children and adultsFront. Psychol. 557.

KennettS.Taylor-ClarkeM.HaggardP. (2001). Noninformative vision improves the spatial resolution of touch in humansCurr. Biol. 1111881191.

KingA. J.CalvertG. A. (2001). Multisensory integration: perceptual grouping by eye and earCurr. Biol. 11R322R325.

KnillD. C.PougetA. (2004). The Bayesian brain: the role of uncertainty in neural coding and computationTrends Neurosci. 27712719.

KnillD. C.SaundersJ. A. (2003). Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res. 4325392558.

KuschelM.Di LucaM.BussM.KlatzkyR. L. (2010). Combination and integration in the perception of visual-haptic compliance informationIEEE Trans. Haptics 3(4) 234244.

LandyM. S.MaloneyL. T.JohnstonE. B.YoungM. (1995). Measurement and modeling of depth cue combination: in defense of weak fusionVision Res. 35389412.

LaurientiP. J.BurdetteJ. H.MaldjianJ. A.WallaceM. T. (2006). Enhanced multisensory integration in older adultsNeurobiol. Aging 2711551163.

MaW. J.PougetA. (2008). Linking neurons to behavior in multisensory perception: a computational reviewBrain Res. 1242412.

MaW. J.BeckJ. M.LathamP. E.PougetA. (2006). Bayesian inference with probabilistic population codesNat. Neurosci. 914321438.

MahoneyJ. R.LiP. C. C.Oh-ParkM.VergheseJ.HoltzerR. (2011). Multisensory integration across the senses in young and old adultsBrain Res. 14264353.

MatsuhashiM.IkedaA.OharaS.MatsumotoR.YamamotoJ.TakayamaM.SatowT.BegumT.UsuiK.NagamineT.MikuniN.TakahashiJ.MiyamotoS.FukuyamaH.ShibasakiH. (2004). Multisensory convergence at human temporo-parietal junction — epicortical recording of evoked responsesClin. Neurophysiol. 11511451160.

McWhinneyS. R.TremblayA.ChevalierT. M.LimV. K.NewmanA. J. (2016). Using CForest to analyze diffusion tensor imaging data: a study of white matter integrity in healthy agingBrain Connect. 6747758.

MisceoG. F.TaylorN. J. (2011). A ‘unity assumption’ does not promote intersensory integrationExp. Psychol. 58385390.

MisceoG. F.HershbergerW. A.ManciniR. L. (1999). Haptic estimates of discordant visual-haptic size vary developmentallyPercept. Psychophys. 61608614.

MisceoG. F.JacksonS. V. S.PerdueJ. R. (2014). Again, knowledge of common source fails to promote visual-haptic integrationPercept. Mot. Skills 118183194.

MorganM. L.DeAngelisG. C.AngelakiD. E. (2008). Multisensory integration in macaque visual cortex depends on cue reliabilityNeuron 59662673.

MoseleyM. (2002). Diffusion tensor imaging and aging — a reviewNMR Biomed. 15553560.

MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2012). Multisensory integration and aging in: The Neural Basis of Multisensory ProcessingMurrayM. M.WallaceM. T. (Eds) pp.  381393. CRC Press/Taylor & FrancisBoca Raton, FL, USA.

NardiniM.JonesP.BedfordR.BraddickO. (2008). Development of cue integration in human navigationCurr. Biol. 18689693.

NormanJ. F.CrabtreeC. E.NormanH. F.MoncriefB. K.HerrmannM.KapleyN. (2006). Aging and the visual, haptic, and cross-modal perception of natural object shapePerception 3513831395.

NormanJ. F.HolminJ. S.BartholomewA. N. (2011a). Visual memories for perceived length are well preserved in older adultsVision Res. 5120572062.

NormanJ. F.KappersA. M. L.BeersA. M.ScottA. K.NormanH. F.KoenderinkJ. J. (2011b). Aging and the haptic perception of 3D surface shapeAtten. Percept. Psychophys. 73908918.

NormanJ. F.CheesemanJ. R.BaxterM. W.ThomasonK. E.AdkinsO. C.RogersC. E. (2014). Aging and visual length discrimination: sequential dependencies, biases, and the effects of multiple implicit standardsVision Res. 988998.

NormanJ. F.AdkinsO. C.NormanH. F.CoxA. G.RogersC. E. (2015a). Aging and the visual perception of exocentric distanceVision Res. 1095258.

NormanJ. F.CheesemanJ. R.AdkinsO. C.CoxA. G.RogersC. E.DowellC. J.BaxterM. W.NormanH. F.ReyesC. M. (2015b). Aging and solid shape recognition: vision and hapticsVision Res. 115113118.

NormanJ. F.AdkinsO. C.HoyngS. C.DowellC. J.PedersenL. E.GilliamA. N. (2016). Aging and the haptic perception of material propertiesPerception 4513871398.

OldfieldR. C. (1971). The assessment and analysis of handedness: The Edinburgh inventoryNeuropsychologia 997113.

Oruçİ.MaloneyL. T.LandyM. S. (2003). Weighted linear cue combination with possibly correlated errorVision Res. 4324512468.

OwsleyC. (2011). Aging and visionVision Res. 5116101622.

ParkD. C.Reuter-LorenzP. (2009). The adaptive brain: aging and neurocognitive scaffoldingAnnu. Rev. Psychol. 60173196.

PeifferA. M.MozolicJ. L.HugenschmidtC. E.LaurientiP. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection taskNeuroReport 1810771081.

PerottiV. J.ToddJ. T.LappinJ. S.PhillipsF. (1998). The perception of surface curvature from optical motionPercept. Psychophys. 60377388.

PetriniK.RemarkA.SmithL.NardiniM. (2014). When vision is not an option: children’s integration of auditory and haptic information is suboptimalDev. Sci. 17376387.

RazN.LindenbergerU.RodrigueK. M.KennedyK. M.HeadD.WilliamsonA.DahleC.GerstorfD.AckerJ. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiersCereb. Cortex 1516761689.

RosasP.WagemansJ.ErnstM. O.WichmannF. A. (2005). Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combinationJ. Opt. Soc. Am. A 22801809.

RosasP.WichmannF. A.WagemansJ. (2007). Texture and object motion in slant discrimination: failure of reliability-based weighting of cues may be evidence for strong fusionJ. Vis. 73. DOI:10.1167/7.6.3.

SaitoD. N.OkadaT.MoritaY.YonekuraY.SadatoN. (2003). Tactile–visual cross-modal shape matching: a functional MRI studyCogn. Brain Res. 171425.

SalthouseT. A. (1996). The processing-speed theory of adult age differences in cognitionPsychol. Rev. 103403428.

SchiffmanS. S. (1997). Taste and smell losses in normal aging and diseaseJAMA 27813571362.

SerweS.DrewingK.TrommershäuserJ. (2009). Combination of noisy directional visual and proprioceptive informationJ. Vis. 928. DOI:10.1167/9.5.28.

SettiA.BurkeK. E.KennyR.NewellF. N. (2013). Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processesFront. Psychol. 4575.

SowellE. R.PetersonB. S.ThompsonP. M.WelcomeS. E.HenkeniusA. L.TogaA. W. (2003). Mapping cortical change across the human life spanNat. Neurosci. 6309315.

StevensJ. C. (1992). Aging and spatial acuity of touchJ. Gerontol. 47P35P40.

SullivanE. V.PfefferbaumA. (2006). Diffusion tensor imaging and agingNeurosci. Biobehav. Rev. 30749761.

ThesenT.VibellJ. F.CalvertG. A.OsterbauerR. A.GiardM. H.WallaceM. (2004). Neuroimaging of multisensory processing in vision, audition, touch, and olfactionCogn. Proc. 58493.

World Medical Association (2013). Declaration of Helsinki: ethical principles for medical research involving human subjectsJAMA 31021912194.

YoungM. J.LandyM. S.MaloneyL. T. (1993). A perturbation analysis of depth perception from combinations of texture and motion cuesVision Res. 3326852696.


  • View in gallery

    Illustration of apparatus and stimuli. (A) The standard box allowed visual, haptic, or visuo-haptic exploration of the standard stimulus; the comparison box allowed haptic exploration of the comparison stimulus; note that the soft drapery covering hand and fingers during haptic exploration is not depicted for reasons of clarity; both boxes were placed next to each other, respective left and right positions were balanced across all trials. (B) Rectangular plastic plates used for length judgements; all plates were 20 mm wide, but varied in length between 15.5 and 27 mm in steps of 1.5 mm, resulting in nine different plate sizes. (C) Overview of visual, haptic, and visuo-haptic conditions; the standard stimulus was explored under specified sensory conditions, the comparison stimulus was always explored only haptically; visual standard stimuli were combined either with a reducing or a magnifying lens, i.e., the 23 mm standard was reduced to about 20 mm and the 20 mm standard was magnified to about 23 mm; sizes of the comparison stimuli were chosen in order to cover the percept of the standard stimulus most appropriately.

  • View in gallery

    Psychometric functions of length discrimination under different sensory conditions. (A) Visual conditions. (B) Haptic conditions. (C) Visuo-haptic conditions. Proportion of trials in which the comparison stimulus was perceived as longer than the standard stimulus is plotted against the length of the comparison stimulus. Left panels give data pooled across young and senior adults, respectively; right panels give data of an exemplary young adult and an exemplary senior adult. Triangles represent data for the set of the 23 mm standard stimulus; dots represent data for the set of the 20 mm standard stimulus. Performance of young adults is given in black; performance of senior adults is given in gray. The dashed horizontal lines illustrate critical performance levels: random discrimination, i.e., 50% judgments ‘longer’, defines the PSE; the length difference of the comparison stimulus between random discrimination and a proportion of 84% ‘longer’ judgements defines the JND, i.e., the discrimination threshold.

  • View in gallery

    Psychometric parameters of length discrimination under different sensory conditions. Results for visual, haptic, and visuo-haptic conditions are illustrated in green, blue, and red, respectively. (A) PSEs. The left panel gives the data for the set of the 23 mm standard stimulus combined with a reducing lense; the right panel gives the data for the set of the 20 mm standard stimulus combined with a magnifying lense. The dashed horizontal lines illustrate the length of the standard stimulus; note that these reference lines give the physical length of the standard stimulus under haptic conditions and the visible length resulting from lense manipulation under visual conditions. (B) JNDs, i.e., discrimination thresholds. The left panel gives the data for the set of the 23 mm standard stimulus combined with a reducing lense; the right panel gives the data for the set of the 20 mm standard stimulus combined with a magnifying lense. Error bars: SEM.

  • View in gallery

    Visual weights under visuo-haptic conditions. Dark gray bars give weights derived from measurements; light gray bars give optimal weights predicted by the MLE model. Note that weights for the sensory modalities add up to 1 and thus haptic weights are illustrated by the open bars. Error bars: SEM.

  • View in gallery

    Comparison of predicted visuo-haptic JNDs derived from different models of multisensory perception and measured visuo-haptic JNDs. (A) Predicted JNDs plotted against measured JNDs for individual young adults. (B) Predicted JNDs plotted against measured JNDs for individual senior adults. Green dots represent predictions from the MLE model, light blue triangles give predictions from the suboptimal integration model, pink squares give prediction from the cue switching model. Colored lines represent linear regressions with the constant being set to 0. The dashed diagonal shows the identity line. (C) Average visuo-haptic JNDs predicted by different models. The dashed lines illustrate the measured visuo-haptic JNDs for young and senior adults, respectively. Error bars: SEM.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 13
Full Text Views 76 76 65
PDF Downloads 3 3 1
EPUB Downloads 0 0 0