Demographic changes in most developed societies have fostered research on functional aging. While cognitive changes have been characterized elaborately, understanding of perceptual aging lacks behind. We investigated age effects on the mechanisms of how multiple sources of sensory information are merged into a common percept. We studied visuo-haptic integration in a length discrimination task. A total of 24 young (20–25 years) and 27 senior (69–77 years) adults compared standard stimuli to appropriate sets of comparison stimuli. Standard stimuli were explored under visual, haptic, or visuo-haptic conditions. The task procedure allowed introducing an intersensory conflict by anamorphic lenses. Comparison stimuli were exclusively explored haptically. We derived psychometric functions for each condition, determining points of subjective equality and discrimination thresholds. We notably evaluated visuo-haptic perception by different models of multisensory processing, i.e., the Maximum-Likelihood-Estimate model of optimal cue integration, a suboptimal integration model, and a cue switching model. Our results support robust visuo-haptic integration across the adult lifespan. We found suboptimal weighted averaging of sensory sources in young adults, however, senior adults exploited differential sensory reliabilities more efficiently to optimize thresholds. Indeed, evaluation of the MLE model indicates that young adults underweighted visual cues by more than 30%; in contrast, visual weights of senior adults deviated only by about 3% from predictions. We suggest that close to optimal multisensory integration might contribute to successful compensation for age-related sensory losses and provides a critical resource. Differentiation between multisensory integration during healthy aging and age-related pathological challenges on the sensory systems awaits further exploration.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alais D., Burr D. (2004). The ventriloquist effect results from near-optimal bimodal integration, Curr. Biol. 14, 257–262.
Andersen G. J. (2012). Aging and vision: changes in function and performance from optics to perception, Wiley Interdiscip. Rev. Cogn. Sci. 3, 403–410.
Angelaki D. E., Gu Y., DeAngelis G. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computation, Curr. Opin. Neurobiol. 19, 452–458.
Attems J., Walker L., Jellinger K. A. (2015). Olfaction and aging: a mini-review, Gerontology 61, 485–490.
Backus B. T., Banks M. S., van Ee R., Crowell J. A. (1999). Horizontal and vertical disparity, eye position, and stereoscopic slant perception, Vision Res. 39, 1143–1170.
Bainbridge K. E., Wallhagen M. I. (2014). Hearing loss in an aging American population: extent, impact, and management, Annu. Rev. Public Health 35, 139–152.
Bates S. L., Wolbers T. (2014). How cognitive aging affects multisensory integration of navigational cues, Neurobiol. Aging 35, 2761–2769.
Beauchamp M. S., Pasalar S., Ro T. (2010). Neural substrates of reliability-weighted visual-tactile multisensory integration, Front. Syst. Neurosci. 4, 25. DOI:10.3389/fnsys.2010.00025.
Boccia M., Nemmi F., Guariglia C. (2014). Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants, Neuropsychol. Rev. 24, 236–251.
Braem B., Honoré J., Rousseaux M., Saj A., Coello Y. (2014). Integration of visual and haptic informations in the perception of the vertical in young and old healthy adults and right brain-damaged patients, Neurophysiol. Clin. 44, 41–48.
Brenner E., van Damme W. J. M. (1999). Perceived distance, shape and size, Vision Res. 39, 975–986.
Bresciani J.-P., Dammeier F., Ernst M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events, J. Vis. 6, 554–564.
Bülthoff H. H., Mallot H. A. (1988). Integration of depth modules: stereo and shading, J. Opt. Soc. Am. A 5, 1749–1758.
Cabeza R., Nyberg L., Park D. C. (2005). Cognitive neuroscience of aging: emergence of a new discipline, in: Cognitive Neuroscience of Aging. Linking Cognitive and Cerebral Aging, Cabeza R., Nyberg L., Park D. C. (Eds), pp. 3–15. Oxford University Press, Oxford, UK.
Calvert G. A., Thesen T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain, J. Physiol. 98, 191–205.
Cellini C., Kaim L., Drewing K. (2013). Visual and haptic integration in the estimation of softness of deformable objects, i-Perception 4, 516–531.
Davis S. W., Dennis N. A., Daselaar S. M., Fleck M. S., Cabeza R. (2008). Que PASA? The posterior-anterior shift in aging, Cereb. Cortex 18, 1201–1209.
Decorps J., Saumet J. L., Sommer P., Sigaudo-Roussel D., Fromy B. (2014). Effect of ageing on tactile transduction processes, Ageing Res. Rev. 13, 90–99.
DeLoss D. J., Pierce R. S., Andersen G. J. (2013). Multisensory integration, aging, and the sound-induced flash illusion, Psychol. Aging 28, 802–812.
Diaconescu A. O., Hasher L., McIntosh A. R. (2013). Visual dominance and multisensory integration changes with age, NeuroImage 65, 152–166.
Diederich A., Colonius H., Schomburg A. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration model, Neuropsychologia 46, 2556–2562.
Drewing K., Ernst M. O. (2006). Integration of force and position cues for shape perception through active touch, Brain Res. 1078, 92–100.
Ernst M. O. (2006). A Bayesian view on multimodal cue integration, in: Advances in Visual Cognition. Human Body Perception From the Inside out, Knoblich G., Thornton I. M., Grosjean M., Shiffrar M. (Eds), pp. 105–131. Oxford University Press, Oxford, UK.
Ernst M. O., Banks M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415(6870), 429–433.
Ernst M. O., Bülthoff H. H. (2004). Merging the senses into a robust percept, Trends Cogn. Sci. 8, 162–169.
Freiherr J., Lundström J. N., Habel U., Reetz K. (2013). Multisensory integration mechanisms during aging, Front. Hum. Neurosci. 7, 863. DOI:10.3389/fnhum.2013.00863.
Gentile G., Petkova V. I., Ehrsson H. H. (2011). Integration of visual and tactile signals from the hand in the human brain: an FMRI study, J. Neurophysiol. 105, 910–922.
Gepshtein S., Burge J., Ernst M. O., Banks M. S. (2005). The combination of vision and touch depends on spatial proximity, J. Vis. 5, 1013–1023.
Giorgio A., Santelli L., Tomassini V., Bosnell R., Smith S., De Stefano N., Johansen-Berg H. (2010). Age-related changes in grey and white matter structure throughout adulthood, NeuroImage 51, 943–951.
Gori M., Del Viva M., Sandini G., Burr D. C. (2008). Young children do not integrate visual and haptic form information, Curr. Biol. 18, 694–698.
Grefkes C., Weiss P. H., Zilles K., Fink G. R. (2002). Crossmodal processing of object features in human anterior intraparietal cortex, Neuron 35, 173–184.
Gunning-Dixon F. M., Brickman A. M., Cheng J. C., Alexopoulos G. S. (2009). Aging of cerebral white matter: a review of MRI findings, Int. J. Ger. Psychiat. 24, 109–117.
Hao X., Huang Y., Li X., Song Y., Kong X., Wang X., Yang Z., Zhen Z., Liu J. (2016). Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study, Brain Behav. 6, e00572. DOI:10.1002/brb3.572.
Hasher L., Zacks R. T. (1988). Working memory, comprehension, and aging: a review and a new view, in: Psychology of Learning and Motivation, Bower G. H. (Ed.), pp. 193–225. Academic Press, New York, NY, USA.
Helbig H. B., Ernst M. O. (2007a). Optimal integration of shape information from vision and touch, Exp. Brain Res. 179, 595–606.
Helbig H. B., Ernst M. O. (2007b). Knowledge about a common source can promote visual-haptic integration, Perception 36, 1523–1533.
Helbig H. B., Ernst M. O., Ricciardi E., Pietrini P., Thielscher A., Mayer K. M., Schultz J., Noppeney U. (2012). The neural mechanisms of reliability weighted integration of shape information from vision and touch, NeuroImage 60, 1063–1072.
Hillis J. M., Watt S. J., Landy M. S., Banks M. S. (2004). Slant from texture and disparity cues: optimal cue combination, J. Vis. 4, 967–992.
Huang J., Gegenfurtner K. R., Schütz A. C., Billino J. (2017). Age effects on saccadic adaptation: evidence from different paradigms reveals specific vulnerabilities, J. Vis. 17, 9. DOI:10.1167/17.6.9.
Jacobs R. A. (1999). Optimal integration of texture and motion cues to depth, Vision Res. 39, 3621–3629.
Jacobs R. A. (2002). What determines visual cue reliability? Trends Cogn. Sci. 6, 345–350.
Jovanovic B., Drewing K. (2014). The influence of intersensory discrepancy on visuo-haptic integration is similar in 6-year-old children and adults, Front. Psychol. 5, 57.
Kennett S., Taylor-Clarke M., Haggard P. (2001). Noninformative vision improves the spatial resolution of touch in humans, Curr. Biol. 11, 1188–1191.
King A. J., Calvert G. A. (2001). Multisensory integration: perceptual grouping by eye and ear, Curr. Biol. 11, R322–R325.
Knill D. C., Pouget A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation, Trends Neurosci. 27, 712–719.
Knill D. C., Saunders J. A. (2003). Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res. 43, 2539–2558.
Kuschel M., Di Luca M., Buss M., Klatzky R. L. (2010). Combination and integration in the perception of visual-haptic compliance information, IEEE Trans. Haptics 3(4), 234–244.
Landy M. S., Maloney L. T., Johnston E. B., Young M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion, Vision Res. 35, 389–412.
Laurienti P. J., Burdette J. H., Maldjian J. A., Wallace M. T. (2006). Enhanced multisensory integration in older adults, Neurobiol. Aging 27, 1155–1163.
Ma W. J., Pouget A. (2008). Linking neurons to behavior in multisensory perception: a computational review, Brain Res. 1242, 4–12.
Ma W. J., Beck J. M., Latham P. E., Pouget A. (2006). Bayesian inference with probabilistic population codes, Nat. Neurosci. 9, 1432–1438.
Mahoney J. R., Li P. C. C., Oh-Park M., Verghese J., Holtzer R. (2011). Multisensory integration across the senses in young and old adults, Brain Res. 1426, 43–53.
Matsuhashi M., Ikeda A., Ohara S., Matsumoto R., Yamamoto J., Takayama M., Satow T., Begum T., Usui K., Nagamine T., Mikuni N., Takahashi J., Miyamoto S., Fukuyama H., Shibasaki H. (2004). Multisensory convergence at human temporo-parietal junction — epicortical recording of evoked responses, Clin. Neurophysiol. 115, 1145–1160.
McWhinney S. R., Tremblay A., Chevalier T. M., Lim V. K., Newman A. J. (2016). Using CForest to analyze diffusion tensor imaging data: a study of white matter integrity in healthy aging, Brain Connect. 6, 747–758.
Misceo G. F., Taylor N. J. (2011). A ‘unity assumption’ does not promote intersensory integration, Exp. Psychol. 58, 385–390.
Misceo G. F., Hershberger W. A., Mancini R. L. (1999). Haptic estimates of discordant visual-haptic size vary developmentally, Percept. Psychophys. 61, 608–614.
Misceo G. F., Jackson S. V. S., Perdue J. R. (2014). Again, knowledge of common source fails to promote visual-haptic integration, Percept. Mot. Skills 118, 183–194.
Morgan M. L., DeAngelis G. C., Angelaki D. E. (2008). Multisensory integration in macaque visual cortex depends on cue reliability, Neuron 59, 662–673.
Moseley M. (2002). Diffusion tensor imaging and aging — a review, NMR Biomed. 15, 553–560.
Mozolic J. L., Hugenschmidt C. E., Peiffer A. M., Laurienti P. J. (2012). Multisensory integration and aging, in: The Neural Basis of Multisensory Processing, Murray M. M., Wallace M. T. (Eds), pp. 381–393. CRC Press/Taylor & Francis, Boca Raton, FL, USA.
Nardini M., Jones P., Bedford R., Braddick O. (2008). Development of cue integration in human navigation, Curr. Biol. 18, 689–693.
Norman J. F., Crabtree C. E., Norman H. F., Moncrief B. K., Herrmann M., Kapley N. (2006). Aging and the visual, haptic, and cross-modal perception of natural object shape, Perception 35, 1383–1395.
Norman J. F., Holmin J. S., Bartholomew A. N. (2011a). Visual memories for perceived length are well preserved in older adults, Vision Res. 51, 2057–2062.
Norman J. F., Kappers A. M. L., Beers A. M., Scott A. K., Norman H. F., Koenderink J. J. (2011b). Aging and the haptic perception of 3D surface shape, Atten. Percept. Psychophys. 73, 908–918.
Norman J. F., Cheeseman J. R., Baxter M. W., Thomason K. E., Adkins O. C., Rogers C. E. (2014). Aging and visual length discrimination: sequential dependencies, biases, and the effects of multiple implicit standards, Vision Res. 98, 89–98.
Norman J. F., Adkins O. C., Norman H. F., Cox A. G., Rogers C. E. (2015a). Aging and the visual perception of exocentric distance, Vision Res. 109, 52–58.
Norman J. F., Cheeseman J. R., Adkins O. C., Cox A. G., Rogers C. E., Dowell C. J., Baxter M. W., Norman H. F., Reyes C. M. (2015b). Aging and solid shape recognition: vision and haptics, Vision Res. 115, 113–118.
Norman J. F., Adkins O. C., Hoyng S. C., Dowell C. J., Pedersen L. E., Gilliam A. N. (2016). Aging and the haptic perception of material properties, Perception 45, 1387–1398.
Oldfield R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia 9, 97–113.
Oruç İ., Maloney L. T., Landy M. S. (2003). Weighted linear cue combination with possibly correlated error, Vision Res. 43, 2451–2468.
Owsley C. (2011). Aging and vision, Vision Res. 51, 1610–1622.
Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: aging and neurocognitive scaffolding, Annu. Rev. Psychol. 60, 173–196.
Peiffer A. M., Mozolic J. L., Hugenschmidt C. E., Laurienti P. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection task, NeuroReport 18, 1077–1081.
Perotti V. J., Todd J. T., Lappin J. S., Phillips F. (1998). The perception of surface curvature from optical motion, Percept. Psychophys. 60, 377–388.
Petrini K., Remark A., Smith L., Nardini M. (2014). When vision is not an option: children’s integration of auditory and haptic information is suboptimal, Dev. Sci. 17, 376–387.
Raz N., Lindenberger U., Rodrigue K. M., Kennedy K. M., Head D., Williamson A., Dahle C., Gerstorf D., Acker J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers, Cereb. Cortex 15, 1676–1689.
Rosas P., Wagemans J., Ernst M. O., Wichmann F. A. (2005). Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination, J. Opt. Soc. Am. A 22, 801–809.
Rosas P., Wichmann F. A., Wagemans J. (2007). Texture and object motion in slant discrimination: failure of reliability-based weighting of cues may be evidence for strong fusion, J. Vis. 7, 3. DOI:10.1167/7.6.3.
Saito D. N., Okada T., Morita Y., Yonekura Y., Sadato N. (2003). Tactile–visual cross-modal shape matching: a functional MRI study, Cogn. Brain Res. 17, 14–25.
Salthouse T. A. (1996). The processing-speed theory of adult age differences in cognition, Psychol. Rev. 103, 403–428.
Schiffman S. S. (1997). Taste and smell losses in normal aging and disease, JAMA 278, 1357–1362.
Serwe S., Drewing K., Trommershäuser J. (2009). Combination of noisy directional visual and proprioceptive information, J. Vis. 9, 28. DOI:10.1167/9.5.28.
Setti A., Burke K. E., Kenny R., Newell F. N. (2013). Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processes, Front. Psychol. 4, 575. https://doi.org/10.3389/fpsyg.2013.00575.
Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., Toga A. W. (2003). Mapping cortical change across the human life span, Nat. Neurosci. 6, 309–315.
Stevens J. C. (1992). Aging and spatial acuity of touch, J. Gerontol. 47, P35–P40.
Sullivan E. V., Pfefferbaum A. (2006). Diffusion tensor imaging and aging, Neurosci. Biobehav. Rev. 30, 749–761.
Thesen T., Vibell J. F., Calvert G. A., Osterbauer R. A., Giard M. H., Wallace M. (2004). Neuroimaging of multisensory processing in vision, audition, touch, and olfaction, Cogn. Proc. 5, 84–93.
World Medical Association (2013). Declaration of Helsinki: ethical principles for medical research involving human subjects, JAMA 310, 2191–2194.
Young M. J., Landy M. S., Maloney L. T. (1993). A perturbation analysis of depth perception from combinations of texture and motion cues, Vision Res. 33, 2685–2696.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 735 | 108 | 14 |
Full Text Views | 270 | 32 | 0 |
PDF Views & Downloads | 33 | 3 | 0 |
Demographic changes in most developed societies have fostered research on functional aging. While cognitive changes have been characterized elaborately, understanding of perceptual aging lacks behind. We investigated age effects on the mechanisms of how multiple sources of sensory information are merged into a common percept. We studied visuo-haptic integration in a length discrimination task. A total of 24 young (20–25 years) and 27 senior (69–77 years) adults compared standard stimuli to appropriate sets of comparison stimuli. Standard stimuli were explored under visual, haptic, or visuo-haptic conditions. The task procedure allowed introducing an intersensory conflict by anamorphic lenses. Comparison stimuli were exclusively explored haptically. We derived psychometric functions for each condition, determining points of subjective equality and discrimination thresholds. We notably evaluated visuo-haptic perception by different models of multisensory processing, i.e., the Maximum-Likelihood-Estimate model of optimal cue integration, a suboptimal integration model, and a cue switching model. Our results support robust visuo-haptic integration across the adult lifespan. We found suboptimal weighted averaging of sensory sources in young adults, however, senior adults exploited differential sensory reliabilities more efficiently to optimize thresholds. Indeed, evaluation of the MLE model indicates that young adults underweighted visual cues by more than 30%; in contrast, visual weights of senior adults deviated only by about 3% from predictions. We suggest that close to optimal multisensory integration might contribute to successful compensation for age-related sensory losses and provides a critical resource. Differentiation between multisensory integration during healthy aging and age-related pathological challenges on the sensory systems awaits further exploration.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 735 | 108 | 14 |
Full Text Views | 270 | 32 | 0 |
PDF Views & Downloads | 33 | 3 | 0 |