How Prior Expectations Influence Older Adults’ Perception and Action During Object Interaction

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The apparent size of an object can influence how we interact with and perceive the weight of objects in our environment. Little is known, however, about how this cue affects behaviour across the lifespan. Here, in the context of the size–weight illusion, we examined how visual size cues influenced the predictive application of fingertip forces and perceptions of heaviness in a group of older participants. We found that our older sample experienced a robust size–weight illusion, which did not differ from that experienced by younger participants. Older and young participants also experienced a real weight difference to a similar degree. By contrast, compared to younger participants our older group showed no evidence that size cues influenced the way they initially gripped and lifted the objects. These results highlight a unique dissociation between how perception and action diverge across the lifespan, and suggest that deficits in the ability to use prediction to guide actions might underpin some of the manual interaction difficulties experienced by the older adults.

How Prior Expectations Influence Older Adults’ Perception and Action During Object Interaction

in Multisensory Research

Sections

References

BlumenH. M.HoltzerR.BrownL. L.GazesY.VergheseJ. (2014). Behavioral and neural correlates of imagined walking and walking-while-talking in the elderlyHum. Brain Mapp. 3540904104.

BuckinghamG. (2014). Getting a grip on heaviness perception: a review of weight illusions and their probable causesExp. Brain Res. 23216231629.

BuckinghamG.CantJ. S.GoodaleM. A. (2009). Living in a material world: how visual cues to material properties affect the way that we lift objects and perceive their weightJ. Neurophysiol. 10231113118.

BuckinghamG.RangerN. S.GoodaleM. A. (2011a). The material–weight illusion induced by expectations aloneAtten. Percept. Psychophys. 733641.

BuckinghamG.RangerN. S.GoodaleM. A. (2011b). The role of vision in detecting and correcting fingertip force errors during object liftingJ. Vis. 114. https://doi.org/10.1167/11.1.4.

BuckinghamG.BieńkiewiczM.RohrbachN.HermsdörferJ. (2015a). The impact of unilateral brain damage on weight perception, sensorimotor anticipation, and fingertip force adaptationVis. Res. 115(Pt B) 231237.

BuckinghamG.MilneJ. L.ByrneC. M.GoodaleM. A. (2015b). The size–weight illusion induced through human echolocationPsychol. Sci. 26237242.

BuckinghamG.MichelakakisE. E.RajendranG. (2016a). The influence of prior knowledge on perception and action: relationships to autistic traitsJ. Autism Dev. Disord. 4617161724.

BuckinghamG.MichelakakisE. E.ColeJ. (2016b). Perceiving and acting upon weight illusions in the absence of somatosensory informationJ. Neurophysiol. 11519461953.

BuckinghamG.GoodaleM. A.WhiteJ. A.WestwoodD. A. (2016c). Equal-magnitude size–weight illusions experienced within and between object categoriesJ. Vis. 1625. https://doi.org/10.1167/16.3.25.

CharpentierA. (1891). Analyse expérimentale de quelques éléments de la sensation de poidsArch. Physiol. Norm. Pathol. 3122135.

ChouinardP. A.LeonardG.PausT. (2005). Role of the primary motor and dorsal premotor cortices in the anticipation of forces during object liftingJ. Neurosci. 2522772284.

ColeK. J. (2006). Age-related directional bias of fingertip forceExp. Brain Res. 175285291.

ColeK. J. (2008). Lifting a familiar object: visual size analysis, not memory for object weight, scales lift forceExp. Brain Res. 188551557.

ColeK. J.RotellaD. L. (2002). Old age impairs the use of arbitrary visual cues for predictive control of fingertip forces during graspExp. Brain Res. 1433541.

ColeK. J.RotellaD. L.HarperJ. G. (1998). Tactile impairments cannot explain the effect of age on a grasp and lift taskExp. Brain Res. 121263269.

ColeK. J.RotellaD. L.HarperJ. G. (1999). Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adultsJ. Neurosci. 1932383247.

EllisR. R.LedermanS. J. (1993). The role of haptic versus visual volume cues in the size–weight illusionPercept. Psychophys. 53315324.

FlanaganJ. R.BeltznerM. A. (2000). Independence of perceptual and sensorimotor predictions in the size–weight illusionNat. Neurosci. 3737741.

FlanaganJ. R.BittnerJ. P.JohanssonR. S. (2008). Experience can change distinct size–weight priors engaged in lifting objects and judging their weightsCurr. Biol. 1817421747.

FolsteinM. F.FolsteinS. E.McHughP. R. (1975). ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinicianJ. Psychiat. Res. 12189198.

GescheiderG. A.BolanowskiS. J.HallK. L.HoffmanK. E.VerrilloR. T. (1994). The effects of aging on information-processing channels in the sense of touch: I. Absolute sensitivitySomatosens. Mot. Res. 11345357.

GordonA. M.ForssbergH.JohanssonR. S.WestlingG. (1991). Visual size cues in the programming of manipulative forces during precision gripExp. Brain Res. 83477482.

GordonA. M.ForssbergH.JohanssonR. S.EliassonA. C.WestlingG. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forcesExp. Brain Res. 90399403.

GordonA. M.WestlingG.ColeK. J.JohanssonR. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objectsJ. Neurophysiol. 6917891796.

GorniakS. L.ZatsiorskyV. M.LatashM. L. (2011). Manipulation of a fragile object by elderly individualsExp. Brain Res. 212505516.

GrandyM. S.WestwoodD. A. (2006). Opposite perceptual and sensorimotor responses to a size–weight illusionJ. Neurophysiol. 9538873892.

HermsdörferJ.LiY.RanderathJ.GoldenbergG.EidenmüllerS. (2011). Anticipatory scaling of grip forces when lifting objects of everyday lifeExp. Brain Res. 2121931.

JohanssonR. S.FlanaganJ. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasksNat. Rev. Neurosci. 10345359.

KapurS.ZatsiorskyV. M.LatashM. L. (2010). Age-related changes in the control of finger force vectorsJ. Appl. Physiol. 10918271841.

KinoshitaH.FrancisP. R. (1996). A comparison of prehension force control in young and elderly individualsEur. J. Appl. Physiol. Occup. Physiol. 74450460.

KloosH.AmazeenE. L. (2002). Perceiving heaviness by dynamic touch: an investigation of the size–weight illusion in preschoolersBr. J. Dev. Psychol. 20171183.

LiY.RanderathJ.GoldenbergG.HermsdörferJ. (2011). Size–weight illusion and anticipatory grip force scaling following unilateral cortical brain lesionNeuropsychologia 49914923.

LindenbergerU.MarsiskeM.BaltesP. B. (2000). Memorizing while walking: increase in dual-task costs from young adulthood to old agePsychol. Aging 15417436.

LohM. N.KirschL.RothwellJ. C.LemonR. N.DavareM. (2010). Information about the weight of grasped objects from vision and internal models interacts within the primary motor cortexJ. Neurosci. 3069846990.

MawaseF.KarnielA. (2010). Evidence for predictive control in lifting series of virtual objectsExp. Brain Res. 203447452.

Mon-WilliamsM.MurrayA. H. (2000). The size of the visual size cue used for programming manipulative forces during precision gripExp. Brain Res. 135405410.

MurrayD. J.EllisR. R.BandomirC. A.RossH. E. (1999). Charpentier (1891) on the size–weight illusionPercept. Psychophys. 6116811685.

NicolasS.RossH. E.MurrayD. J. (2012). Charpentier’s papers of 1886 and 1891 on weight perception and the size–weight illusionPercept. Mot. Skills 115120141.

PickH. L.PickA. D. (1967). A developmental and analytic study of the size–weight illusionJ. Exp. Child Psychol. 5362371.

RobinsonH. B. (1964). An experimental examination of the size–weight illusion in young childrenChild Dev. 3591.

SeidlerR. D.BernardJ. A.BurutoluT. B.FlingB. W.GordonM. T.GwinJ. T.KwakY.LippsD. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effectsNeurosci. Biobehav. Rev. 34721733.

SrygleyJ. M.MirelmanA.HermanT.GiladiN.HausdorffJ. M. (2009). When does walking alter thinking? Age and task associated findingsBrain Res. 12539299.

TrewarthaK. M.FlanaganJ. R. (2016). Distinct contributions of explicit and implicit memory processes to weight prediction when lifting objects and judging their weights: an aging studyJ. Neurophysiol. 11611281136.

TrewarthaK. M.GarciaA.WolpertD. M.FlanaganJ. R. (2014). Fast but fleeting: adaptive motor learning processes associated with aging and cognitive declineJ. Neurosci. 341341113421.

Van PolanenV.DavareM. (2015). Sensorimotor memory biases weight perception during object liftingFront. Hum. Neurosci. 9700. https://doi.org/10.3389/fnhum.2015.00700.

ZwislockiJ. J.GoodmanD. A. (1980). Absolute scaling of sensory magnitudes: a validationPercept. Psychophys. 282838.

Figures

  • View in gallery

    The handle containing the Nano17 force transducer which participants used to lift the experimental objects.

  • View in gallery

    (A) The perceptual ratings of heaviness given to all objects, averaged across all trials and (B) the comparison of the magnitudes of the experience real weight differences (mean heavy − mean light) and the illusory weight differences (mean small − mean large). Error bars show standard error of the means.

  • View in gallery

    The first trial forces and force rates for (A) the Young group and (B) the Old group. Grip forces and grip force rates (left figures) are shifted to be centred around peak grip force rate, whereas load forces and load force rates (right figures) are shifted to be centred around the peak load force rate. Bold lines show the average forces and force rates over time for each condition, with thin lines representing individuals’ traces. Note this figure is for descriptive purposes, and statistics were performed on individual peak force rate values.

  • View in gallery

    The peak grip force rate used by each age group for the first lift of the large heavy cylinder and small heavy cylinder. These lifts occurred immediately after the five practice lifts of the medium-sized heavy cylinder.

  • View in gallery

    The peak load force rate used by each age group for the first lift of the large heavy cylinder and small heavy cylinder. These lifts occurred immediately after the five practice lifts of the medium-sized heavy cylinder.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 38 38 37
Full Text Views 15 15 15
PDF Downloads 2 2 2
EPUB Downloads 0 0 0