Still no Evidence for Sustained Effects of Multisensory Integration of Duration

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



In studies on temporal order perception, immediate as well as sustained effects of multisensory integration have been demonstrated repeatedly. Regarding duration perception, the corresponding literature reports clear immediate effects of multisensory integration, but evidence on sustained effects of multisensory duration integration is scarce. In fact, a single study [Heron, J. et al. (2013). A neural hierarchy for illusions of time: Duration adaptation precedes multisensory integration, J. Vis. 13, 1–12.] investigated adaptation to multisensory conflicting intervals, and found no sustained effects of the audiovisual conflict on perceived duration of subsequently presented unimodal visual intervals. In two experiments, we provide independent evidence in support of this finding. In Experiment 1, we demonstrate that adaptation to audiovisual conflict does not alter perceived duration of subsequently presented visual test intervals. Thus, replicating the results of Heron et al. (2013), we observed no sustained effect of multisensory duration integration. However, one might argue that the prolonged exposure to consistent multisensory conflict might have prevented or hampered multisensory integration per se. In Experiment 2, we rule out this alternative explanation by showing that multisensory integration of audiovisual conflicting intervals is still effective after exposure to audiovisual conflict. This further strengthens the conclusion that multisensory integration of interval duration affects perception in an immediate, but not in a sustained manner.

Still no Evidence for Sustained Effects of Multisensory Integration of Duration

in Multisensory Research



AsaokaR. and GyobaJ. (2016). Sounds modulate the perceived duration of visual stimuli via crossmodal integrationMultisens. Res. 29319335.

BausenhartK. M.De la RosaM. D. and UlrichR. (2014). Multimodal integration of time: visual and auditory contributions to perceived duration and sensitivityExp. Psychol. 61310322.

BausenhartK. M.BratzkeD. and UlrichR. (2016). Formation and representation of temporal reference informationCurr. Opin. Behav. Sci. 84652.

BertelsonP. and AscherslebenG. (2003). Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory–visual temporal order judgmentInt. J. Psychophysiol. 50147155.

BrainardD. H. (1997). The psychophysics toolboxSpat. Vis. 10433436.

ChenK. M. and YehS. L. (2009). Asymmetric cross-modal effects in time perceptionActa Psychol. 130225234.

ChenL. and VroomenJ. (2013). Intersensory binding across space and time: a tutorial reviewAtten. Percept. Psychophys. 75790811.

ChenY.HuangX.LuoY.PengC. and LiuC. (2010). Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball taskBrain Res. 1325100111.

De la RosaM. D. and BausenhartK. M. (2013). Multimodal integration of interval duration: temporal ventriloquism or changes in pacemaker rate?Timing Time Percept. 1189215.

Di LucaM.MachullaT. K. and ErnstM. O. (2009). Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latencyJ. Vis. 97. DOI:10.1167/9.12.7.

DyjasO.BausenhartK. M. and UlrichR. (2014). Effects of stimulus order on duration discrimination sensitivity are under attentional controlJ. Exp. Psychol. Hum. Percept. Perform. 40292307.

ErnstM. O. and BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashionNature 415(6870) 429433.

FujisakiW.ShimojoS.KashinoM. and NishidaS. (2004). Recalibration of audiovisual simultaneityNat. Neurosci. 7773778.

GetzmannS. (2007). The effect of brief auditory stimuli on visual apparent motionPerception 3610891103.

GibbonJ. (1977). Scalar expectancy theory and Weber’s law in animal timingPsychol. Rev. 84279325.

GibbonJ.ChurchR. M. and MeckW. H. (1984). Scalar timing in memoryAnn. N. Y. Acad. Sci. 423(1) 5277.

GrondinS.IvryR. B.FranzE.PerreaultL. and MetthéL. (1996). Markers’ influence on the duration discrimination of intermodal intervalsPercept. Psychophys. 58424433.

HansonJ. V. M.HeronJ. and WhitakerD. (2008). Recalibration of perceived time across sensory modalitiesExp. Brain Res. 185347352.

HarrarV. and HarrisL. R. (2008). The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneityExp. Brain Res. 186517524.

Hartcher-O’BrienJ.Di LucaM. and ErnstM. O. (2014). The duration of uncertain times: audiovisual information about intervals is integrated in a statistically optimal fashionPLoS One 9e89339. DOI:10.1371/journal.pone.0089339.

HeronJ.WhitakerD.McGrawP. V. and HoroshenkovK. V. (2007). Adaptation minimizes distance-related audiovisual delaysJ. Vis. 7(5) 18. DOI:10.1167/7.13.5.

HeronJ.RoachN. W.WhitakerD. and HansonJ. V. M. (2010). Attention regulates the plasticity of multisensory timingEur. J. Neurosci. 3117551762.

HeronJ.Aaen-StockdaleC.HotchkissJ.RoachN. W.McGrawP. V. and WhitakerD. (2012). Duration channels mediate human time perceptionProc. R. Soc. B Biol. Sci. 279(1729) 690698.

HeronJ.HotchkissJ.Aaen-StockdaleC.RoachN. W. and WhitakerD. (2013). A neural hierarchy for illusions of time: duration adaptation precedes multisensory integrationJ. Vis. 134. DOI:10.1167/13.14.4.

KeetelsM. and VroomenJ. (2007). No effect of auditory-visual spatial disparity on temporal recalibrationExp. Brain Res. 182559565.

KeetelsM.StekelenburgJ. and VroomenJ. (2007). Auditory grouping occurs prior to intersensory pairing: evidence from temporal ventriloquismExp. Brain Res. 180449456.

KleinerM.BrainardD. H.PelliD. G.BroussardC.WolfT. and NiehorsterD. (2007). What’s new in Psychtoolbox-3?Perception 3614. DOI:10.1068/v070821.

KlinkP. C.MontijnJ. S. and van WezelR. J. A. (2011). Crossmodal duration perception involves perceptual grouping, temporal ventriloquism, and variable internal clock ratesAtten. Percep. Psychophys. 73219236.

MachullaT. K.Di LucaM.FroehlichE. and ErnstM. O. (2012). Multisensory simultaneity recalibration: storage of the aftereffect in the absence of counterevidenceExp. Brain Res. 2178997.

MahaniM. A. N.SheybaniS.BausenhartK. M.UlrichR. and AhmadabadiM. N. (2017). Multisensory perception of contradictory information in an environment of varying reliability: evidence for conscious perception and optimal causal inferenceSci. Rep. 73167. DOI:10.1038/s41598-017-03521-2.

MeredithM. A.NemitzJ. W. and SteinB. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factorsJ. Neurosci. 732153229.

Morein-ZamirS.Soto-FaracoS. and KingstoneA. (2003). Auditory capture of vision: examining temporal ventriloquismCogn. Brain Res. 17154163.

MoreyR. D. (2008). Confidence intervals from normalized data: a correction to Cousineau (2005)Tutor. Quant. Methods Psychol. 46164.

PelliD. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into moviesSpat. Vis. 10437442.

Penton-VoakI. S.EdwardsH.PercivalA. and WeardenJ. H. (1996). Speeding up an internal clock in humans? Effects of click trains on subjective durationJ. Exp. Psychol. Anim. Behav. Proc. 22307320.

PowersA. R.HillockA. R. and WallaceM. T. (2009). Perceptual training narrows the temporal window of multisensory bindingJ. Neurosci. 291226512274.

RomeiV.De HaasB.MokR. M. and DriverJ. (2011). Auditory stimulus timing influences perceived duration of co-occurring visual stimuliFront. Psychol. 2215. DOI:10.3389/fpsyg.2011.00215.

RousseauR.PoirierJ. and LemyreL. (1983). Duration discrimination of empty time intervals marked by intermodal pulsesPercept. Psychophys. 34541548.

SarmientoB. R.ShoreD. I.MillikenB. and SanabriaD. (2012). Audiovisual interactions depend on context of congruencyAtten. Percept. Psychophys. 74563574.

ShiZ.ChenL. and MüllerH. J. (2010). Auditory temporal modulation of the visual Ternus effect: the influence of time intervalExp. Brain Res. 203723735.

SpenceC. and SquireS. (2003). Multisensory integration: maintaining the perception of synchronyCurr. Biol. 13519521.

UlrichR.NitschkeJ. and RammsayerT. (2006). Crossmodal temporal discrimination: assessing the predictions of a general pacemaker-counter modelPercept. Psychophys. 6811401152.

VatakisA.NavarraJ.Soto-FaracoS. and SpenceC. (2007). Temporal recalibration during asynchronous audiovisual speech perceptionExp. Brain Res. 181173181.

VroomenJ. and de GelderB. (2004). Temporal ventriloquism: sound modulates the flash-lag effectJ. Exp. Psychol. Hum. Percept. Perform. 30513518.

VroomenJ. and KeetelsM. (2009). Sounds change four-dot maskingActa Psychol. 1305863.

VroomenJ.KeetelsM.De GelderB. and BertelsonP. (2004). Recalibration of temporal order perception by exposure to audio-visual asynchronyCogn. Brain Res. 223235.

WalkerJ. T. and ScottK. J. (1981). Auditory-visual conflicts in the perceived duration of lights, tones and gapsJ. Exp. Psychol. Hum. Percept. Perform. 713271339.

WalkerJ. T.IrionA. L. and GordonD. G. (1981). Simple and contingent aftereffects of perceived duration in vision and auditionAtten. Percept. Psychophys. 29475486.

WeardenJ. H.EdwardsH.FakhriM. and PercivalA. (1998). Why “sounds are judged longer than lights”: application of a model of the internal clock in humansQ. J. Exp. Psychol. B 5197120.

WeardenJ. H.NortonR.MartinS. and Montford-BebbO. (2007). Internal clock processes and the filled-duration illusionJ. Exp. Psychol. Hum. Percept. Perform. 33716729.

WelchR. B. and WarrenD. H. (1980). Immediate perceptual response to intersensory discrepancyPsychol. Bull. 88638667.

WittenI. B. and KnudsenE. I. (2005). Why seeing is believing: merging auditory and visual worldsNeuron 48489496.

ZaidelA.TurnerA. H. and AngelakiD. E. (2011). Multisensory calibration is independent of cue reliabilityJ. Neurosci. 311394913962.

ZaidelA.MaW. and AngelakiD. E. (2013). Supervised calibration relies on the multisensory perceptNeuron 8015441557.


  • View in gallery

    Schematic representation of adaptation and test phases in the different bias conditions for Experiment 1.

  • View in gallery

    Mean reproduced duration as a function of Bias Condition and Interval Duration in Experiment 1. Error bars represent ± 1 within-subject standard error of the mean with a correction for between-subjects variability (Morey, 2008) and the continuous black line depicts the identity line.

  • View in gallery

    Mean reproduced duration as a function of Bias Condition and Interval Duration in Experiment 2. Error bars represent ±1 within-subject standard error of the mean with a correction for between-subjects variability (Morey, 2008) and the continuous black line depicts the identity line.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 6
Full Text Views 12 12 6
PDF Downloads 2 2 2
EPUB Downloads 0 0 0