In the past decade, there has been a rapid advance in Virtual Reality (VR) technology. Key to the user’s VR experience are multimodal interactions involving all senses. The human brain must integrate real-time vision, hearing, vestibular and proprioceptive inputs to produce the compelling and captivating feeling of immersion in a VR environment. A serious problem with VR is that users may develop symptoms similar to motion sickness, a malady called cybersickness. At present the underlying cause of cybersickness is not yet fully understood. Cybersickness may be due to a discrepancy between the sensory signals which provide information about the body’s orientation and motion: in many VR applications, optic flow elicits an illusory sensation of motion which tells users that they are moving in a certain direction with certain acceleration. However, since users are not actually moving, their proprioceptive and vestibular organs provide no cues of self-motion. These conflicting signals may lead to sensory discrepancies and eventually cybersickness. Here we review the current literature to develop a conceptual scheme for understanding the neural mechanisms of cybersickness. We discuss an approach to cybersickness based on sensory cue integration, focusing on the dynamic re-weighting of visual and vestibular signals for self-motion.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Akiduki, H., Nishiike, S., Watanabe, H., Matsuoka, K., Kubo, T. and Takeda, N. (2003). Visual–vestibular conflict induced by virtual reality in humans, Neuroscience Letters 340(3), 197–200. DOI:10.1016/S0304-3940(03)00098-3.
Alaker, M., Wynn, G. R. and Arulampalam, T. (2016). Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis, International Journal of Surgery 29, 85–94. DOI:10.1016/j.ijsu.2016.03.034.
Angelaki, D. E., Gu, Y. and Deangelis, G. C. (2011). Visual and vestibular cue integration for heading perception in extrastriate visual cortex, Journal of Physiology 589(4), 825–833. DOI:10.1113/jphysiol.2010.194720.
Arns, L. L. and Cerney, M. M. (2005). The relationship between age and incidence of cybersickness among immersive environment users, in: Proceedings of the IEEE Virtual Reality 2005, pp. 267–268. DOI:10.1109/VR.2005.1492788.
Ash, A. and Palmisano, S. (2012). Vection during conflicting multisensory information about the axis, magnitude, and direction of self-motion, Perception 41(3), 253–267. DOI:10.1068/p7129.
Ash, A., Palmisano, S. and Kim, J. (2011). Vection in depth during consistent and inconsistent multisensory stimulation, Perception 40(2), 155–174. DOI:10.1068/p6837.
Azmandian, M., Hancock, M., Benko, H., Ofek, E. and Wilson, A. D. (2016). Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences, in: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems — CHI’16, pp. 1968–1979. DOI:10.1145/2858036.2858226.
Balter, S. G. T., Stokroos, R. J., Van De Laar, M. M. M., Hendrice, N. and Kingma, H. (2004). Habituation to galvanic vestibular stimulation for analysis of susceptibility to carsickness, Acta Oto-Laryngologica 124(6), 690–694. DOI:10.1080/00016480410017242.
Barlow, H. B. and Hill, R. M. (1963). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects, Nature 200, 1345–1347.
Barra, J., Marquer, A., Joassin, R., Reymond, C., Metge, L., Chauvineau, V. and Pérennou, D. (2010). Humans use internal models to construct and update a sense of verticality, Brain 133(12), 3552–3563. DOI:10.1093/brain/awq311.
Barrett, J. (2004). Side effects of virtual environments: a review of the literature. Available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA426109.
Bastug, E., et al. (2017). Toward interconnected virtual reality: opportunities, challenges, and enablers, IEEE Communications Magazine 55(6), 110–117.
Bellini, H., Chen, W., Sugiyama, M., Shin, M., Alam, S. and Takayama, D. (2016). Virtual & augmented reality: understanding the race for the next computing platform, Profiles in Innovation.
Bense, S., Stephan, T., Yousry, T. A., Brandt, T. and Dieterich, M. (2001). Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI), Journal of Neurophysiology 85(2), 886–899.
Berthoz, A., Israël, I., Georges-François, P., Grasso, R. and Tsuzuku, T. (1995). Spatial memory of body linear displacement: what is being stored?, Science 269(5220), 95–98.
Bles, W., Bos, J. E., De Graaf, B., Groen, E. and Wertheim, A. H. (1998). Motion sickness: only one provocative conflict?, Brain Research Bulletin 47(5), 481–487. DOI:10.1016/S0361-9230(98)00115-4.
Bonato, F., Bubka, A. and Palmisano, S. (2009). Combined pitch and roll and cybersickness in a virtual environment, Aviation, Space, and Environmental Medicine 80(11), 941–945. DOI:10.3357/ASEM.2394.2009.
Bos, J. E., Bles, W. and Groen, E. L. (2008). A theory on visually induced motion sickness, Displays 29(2), 47–57. DOI:10.1016/j.displa.2007.09.002.
Brandt, T., Bartenstein, P., Janek, A. and Dieterich, M. (1998). Reciprocal inhibitory visual–vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex, Brain 121(9), 1749–1758. DOI:10.1093/brain/121.9.1749.
Bremmer, F., Klam, F., Duhamel, J.-R., Ben Hamed, S. and Graf, W. (2002). Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP), The European Journal of Neuroscience 16(8), 1569–1586.
Butler, J. S., Smith, S. T., Campos, J. L. and Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading, Journal of Vision 10(11), 23. DOI:10.1167/10.11.23.
Cameirão, M., Bermúdez i Badia, S., Duarte, E. and Verschure, P. F. M. J. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System, Restorative Neurology and Neuroscience 29, 287–298. DOI:10.3233/RNN-2011-0599.
Cameirão, M. S., Badia, S. B. I., Duarte, E., Frisoli, A. and Verschure, P. F. M. J. (2012). The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke, Stroke 43(10), 2720–2728. DOI:10.1161/STROKEAHA.112.653196.
Cevette, M. J., Stepanek, J., Cocco, D., Galea, A. M., Pradhan, G. N., Wagner, L. S., Oakley, S. R., Smith, B. E., Zapala, D. A. and Brookler, K. H. (2012). Oculo–vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness, Aviation, Space, and Environmental Medicine 83(6), 549–555. DOI:10.3357/ASEM.3239.2012.
Chance, S. S., Gaunet, F., Beall, A. C. and Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration, Presence: Teleoperators and Virtual Environments 7(2), 168–178. DOI:10.1162/105474698565659.
Chang, E., Hwang, I., Jeon, H., Chun, Y., Kim, H. T. and Park, C. (2013). Effects of rest frames on cybersickness and oscillatory brain activity, in: 2013 International Winter Workshop on Brain–Computer Interface, BCI 2013, pp. 62–64. DOI:10.1109/IWW-BCI.2013.6506631.
Chen, A., DeAngelis, G. C. and Angelaki, D. E. (2010). Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow, Journal of Neuroscience: the Official Journal of the Society for Neuroscience 30(8), 3022–3042. DOI:10.1523/JNEUROSCI.4029-09.2010.
Chen, D. J., Bao, B., Zhao, Y. and So, R. H. Y. (2015). Visually induced motion sickness when viewing visual oscillations of different frequencies along the fore-and-aft axis: keeping velocity versus amplitude constant, Ergonomics 59(4), 582–590. DOI:10.1080/00140139.2015.1078501.
Chen, W., Chao, J. G., Chen, X. W., Wang, J. K. and Tan, C. (2015). Quantitative orientation preference and susceptibility to space motion sickness simulated in a virtual reality environment, Brain Research Bulletin 113, 17–26. DOI:10.1016/j.brainresbull.2015.01.007.
Cheung, B. S., Howard, I. P. and Money, K. E. (1991). Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects, Aviation, Space, and Environmental Medicine 62(6), 527–531.
Clemes, S. A. and Howarth, P. A. (2005). The menstrual cycle and susceptibility to virtual simulation sickness, Journal of Biological Rhythms 20(1), 71–82. DOI:10.1177/0748730404272567.
Clower, D. M., Hoffman, J. M., Votaw, J. R., Faber, T. L., Woods, R. P. and Alexander, G. E. (1996). Role of posterior parietal cortex in the recalibration of visually guided reaching, Nature 383, 618–621. DOI:10.1038/383618a0.
Cobb, S. V. G., Nichols, S., Ramsey, A. and Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE), Presence: Teleoperators and Virtual Environments 8(2), 169–186. DOI:10.1162/105474699566152.
Davis, S., Nesbitt, K. and Nalivaiko, E. (2014). A systematic review of cybersickness, in: Proceedings of the 2014 Conference on Interactive Entertainment — IE2014, pp. 1–9. DOI:10.1145/2677758.2677780.
Davis, S., Nesbitt, K. and Nalivaiko, E. (2015). Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters, in: 11th Australasian Conference on Interactive Entertainment — IE 2015, pp. 27–30. DOI:10.17973/MMSJ.2015.
de Winkel, K. N., Soyka, F., Barnett-Cowan, M., Bülthoff, H. H., Groen, E. L. and Werkhoven, P. J. (2013). Integration of visual and inertial cues in the perception of angular self-motion, Experimental Brain Research 231(2), 209–218. DOI:10.1007/s00221-013-3683-1.
de Winkel, K. N., Weesie, J., Werkhoven, P. J. and Groen, E. L. (2010). Integration of visual and inertial cues in perceived heading of self-motion, Journal of Vision 10(12), 1. DOI:10.1167/10.12.1.
Dennison, M. S. and D’Zmura, M. (2017). Cybersickness without the wobble: experimental results speak against postural instability theory, Applied Ergonomics 58, 215–223. DOI:10.1016/j.apergo.2016.06.014.
Dennison, M. S., Wisti, A. Z. and D’Zmura, M. (2016). Use of physiological signals to predict cybersickness, Displays 44, 42–52. DOI:10.1016/j.displa.2016.07.002.
Deutschländer, A., Bense, S., Stephan, T., Schwaiger, M., Brandt, T. and Dieterich, M. (2002). Sensory system interactions during simultaneous vestibular and visual stimulation in PET, Human Brain Mapping 16(2), 92–103.
Di Girolamo, S. and Pic, P. (2001). Vestibulo–ocular reflex modification after virtual environment exposure, Acta Oto-Laryngologica 121(2), 211–215. DOI:10.1080/000164801300043541.
Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415(6870), 429–433. DOI:10.1038/415429a.
Ernst, M. O. and Bülthoff, H. H. (2004). Merging the senses into a robust percept, Trends in Cognitive Sciences 8(4), 162–169. DOI:10.1016/j.tics.2004.02.002.
Fasold, O., von Brevern, M., Kuhberg, M., Ploner, C. J., Villringer, A., Lempert, T. and Wenzel, R. (2002). Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging, NeuroImage 17(3), 1384–1393. DOI:10.1006/nimg.2002.1241.
Ferrè, E. R. and Haggard, P. (2015). Vestibular–somatosensory interactions: a mechanism in search of a function?, Multisensory Research 28(5–6), 559–579.
Fetsch, C. R., Deangelis, G. C. and Angelaki, D. E. (2010). Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory, The European Journal of Neuroscience 31(10), 1721–1729. DOI:10.1038/jid.2014.371.
Fetsch, C. R., Turner, A. H., DeAngelis, G. C. and Angelaki, D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception, Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(49), 15601–15612. DOI:10.1523/JNEUROSCI.2574-09.2009.
Fiore, L. P., Coben, E., Merritt, S., Liu, P. and Interrante, V. (2013). Towards enabling more effective locomotion in VR using a wheelchair-based motion platform, in: Proceedings of the 5th Joint Virtual Reality Conference, pp. 83–90. DOI:10.2312/EGVE.JVRC13.083-090.
Flanagan, M. B., May, J. G. and Dobie, T. G. (2005). Sex differences in tolerance to visually-induced motion sickness, Aviation, Space, and Environmental Medicine 76(7), 642–646.
Galvez-Garcia, G., Hay, M. and Gabaude, C. (2015). Alleviating simulator sickness with galvanic cutaneous stimulation, Human Factors 57(4), 649–657. DOI:10.1177/0018720814554948.
Gibson, J. J. (1950). The perception of visual surfaces, American Journal of Psychology 63(3), 367–384.
Golding, J. (2016). Motion sickness, in: Handbook of Clinical Neurology, Vol. 137, pp. 371–390. Elsevier B.V., Amsterdam. DOI:10.1016/B978-0-444-63437-5.00027-3.
Golding, J. F., Kadzere, P. and Gresty, M. A. (2005). Motion sickness susceptibility fluctuates through the menstrual cycle, Aviation, Space, and Environmental Medicine 76(10), 970–973. DOI:10.1196/annals.1429.018.
Gower, D. W. and Fowlkes, J. E. (1989). Simulator sickness in the UH-60 (Black Hawk) flight simulator, USAARL 89-20 (AD-A214 434), U.S. Army Aeromedical Research Laboratory.
Green, A. M. and Angelaki, D. E. (2010). Multisensory integration: resolving sensory ambiguities to build novel representations, Current Opinion in Neurobiology 20(3), 353–360. DOI:10.1016/j.conb.2010.04.009.
Greenlee, M. W., Frank, S. M., Kaliuzhna, M., Blanke, O., Bremmer, F., Churan, J., Cuturi, L. F., MacNeilage, P. R. and Smith, A. T. (2016). Multisensory integration in self motion perception, Multisensory Research 29(6–7), 525–556. DOI:10.1163/22134808-00002527.
Greybeil, A. (1970). Susceptibility to acute motion sickness in blind persons, Aerospace Medicine 41(6), 650–653.
Gu, Y., Angelaki, D. E. and DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd, Nature Neuroscience 11(10), 1201–1210. DOI:10.1038/nn.2191.
Guldin, W. O. and Grüsser, O. J. (1998). Is there a vestibular cortex?, Trends in Neurosciences 21(6), 254–259. DOI:10.1016/S0166-2236(97)01211-3.
Han, K., Park, C., Kim, E., Kim, D., Woo, S., Jeong, J., Hwang, I. and Kim, H. (2011). Effects of different types of 3D rest frames on reducing cybersickness in a virtual environment, i-Perception 2(8), 861. DOI:10.1068/ic861.
Harm, D. L., Taylor, L. C., Reschke, M. F., Somers, J. T. and Bloomberg, J. J. (2008). Sensorimotor coordination aftereffects of exposure to a virtual environment, Visual Computer 24(11), 995–999. DOI:10.1007/s00371-008-0277-1.
Harsora, J., Khanvilkar, A., Sayyad, M. and Road, M. (2017). A systematic literature review on virtual reality — the Oculus Rift, International Journal of Research in Science and Engineering Special Issue 7, 35–43.
Herbelin, B., Salomon, R., Serino, A. and Blanke, O. (2015). Neural mechanisms of bodily self-consciousness and the experience of presence in virtual reality, in: Human–Computer Confluence, pp. 80–96. DOI:10.1515/9783110471137-005.
Hill, K. J. and Howarth, P. A. (2000). Habituation to the side effects of immersion in a virtual environment, Displays 21(1), 25–30. DOI:10.1016/S0141-9382(00)00029-9.
Howarth, P. A. and Hodder, S. G. (2008). Characteristics of habituation to motion in a virtual environment, Displays 29(2), 117–123. DOI:10.1016/j.displa.2007.09.009.
Hsu, C., et al. (2017). Is foveated rendering perceivable in virtual reality? Exploring the efficiency and consistency of ality assessment methods, in: Proceedings of the 2017 ACM on Multimedia Conference — MM’17, pp. 55–63. Available at: http://dirl.iis.sinica.edu.tw/pub/hsu17_is_foveated_rendering_perceivable.pdf.
Israël, I. and Berthoz, A. (1989). Contribution of the otoliths to the calculation of linear displacement, Journal of Neurophysiology 62(1), 247–263. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2754476 (accessed: 5 October 2017).
Israël, I., Chapuis, N., Glasauer, S., Charade, O. and Berthoz, A. (1993). Estimation of passive horizontal linear whole-body displacement in humans, Journal of Neurophysiology 70(3), 1270–1273. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8229174 (accessed: 5 October 2017).
Jürgens, R., Kliegl, K., Kassubek, J. and Becker, W. (2016). Optokinetic circular vection: a test of visual–vestibular conflict models of vection nascensy, Experimental Brain Research 234(1), 67–81. DOI:10.1007/s00221-015-4433-3.
Kaliuzhna, M., Ferrè, E. R., Herbelin, B., Blanke, O. and Haggard, P. (2016). Multisensory effects on somatosensation: a trimodal visuo–vestibular–tactile interaction, Scientific Reports 6, 26301.
Kato, K. and Kitazaki, S. (2008). Improvement of ease of viewing images on an in-vehicle display and reduction of carsickness, in: Human Factors in Driving, Seating Comfort and Automotive Telematics. DOI:10.4271/2008-01-0565.
Kellog, R. S., Castore, C. and Coward, R. (1980). Psychophysiological effects of training in a full vision simulator, in: Annual Scientific Meeting of the Aerospace Medical Association.
Kennedy, R. S., Berbaum, K. S., Lilienthal, M. G., Dunlap, W. P., Mulligan, B. E. and Funaro, J. F. (1987). Guidelines for alleviation of simulator sickness symptomatology. Naval Training Systems Center.
Kennedy, R. S., Drexler, J. and Kennedy, R. C. (2010). Research in visually induced motion sickness, Applied Ergonomics 41(4), 494–503. DOI:10.1016/j.apergo.2009.11.006.
Kennedy, R. S., Drexler, J. M., Compton, D. E., Stanney, K. M., Lanham, D. S. and Harm, D. L. (2003). Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences, in: Virtual and Adaptive Environments: Applications Implications and Human Performance Issues, pp. 247–278. DOI:10.1201/9781410608888.ch12.
Kennedy, R. S., Lane, N. E., Berbaum, K. S. and Lilienthal, M. G. (1993). Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness, International Journal of Aviation Psychology 3(3), 203–220.
Kennedy, R. S., Stanney, K. M. and Dunlap, W. P. (2000). Duration and exposure to virtual environments: sickness curves during and across sessions, Presence: Teleoperators and Virtual Environments 9(5), 463–472.
Keshavarz, B. (2013). Exploring behavioral methods to reduce visually induced motion sickness in virtual environments, in: 5th International Conference, VAMR 2013, Held as Part of HCI International 2013, p. 399. DOI:10.1007/978-3-642-39405-8.
Keshavarz, B. and Hecht, H. (2011). Axis rotation and visually induced motion sickness: the role of combined roll, pitch, and yaw motion, Aviation, Space, and Environmental Medicine 82(11), 1023–1029. DOI:10.3357/ASEM.3078.2011.
Keshavarz, B., Riecke, B. E., Hettinger, L. J. and Campos, J. L. (2015). Vection and visually induced motion sickness: how are they related?, Frontiers in Psychology 6, 472. DOI:10.3389/fpsyg.2015.00472.
Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D. and Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment, Presence: Teleoperators and Virtual Environments 17(1), 1–16. DOI:10.1162/pres.17.1.1.
Kim, Y. Y., Kim, H. T. J., Kim, E. N., Ko, H. D. and Kim, H. T. J. (2005). Characteristic changes in the physiological components of cybersickness, Psychophysiology 42(5), 616–625. DOI:10.1007/s00234-005-1388-2.
Kim, Y. Y., Kim, H. T. J., Ko, H. D. and Kim, H. T. J. (2001). Psychophysiological changes by navigation in a virtual reality, Annual Reports of the Research Reactor Institute, Kyoto University 4, 3773–3776. DOI:10.1109/IEMBS.2001.1019659.
Kinsella, A., Mattfeld, R., Muth, E. and Hoover, A. (2016). Frequency, not amplitude, of latency affects subjective sickness in a head-mounted display, Aerospace Medicine and Human Performance 87(7), 604–609. DOI:10.3357/AMHP.4351.2016.
Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation, Trends in Neurosciences 27(12), 712–719. DOI:10.1016/j.tins.2004.10.007.
Koslucher, F., Haaland, E. and Stoffregen, T. A. (2016). Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness, Experimental Brain Research 234(1), 313–322. DOI:10.1007/s00221-015-4462-y.
Kushner, D. (2016). Will virtual reality change your life?, Rolling Stone, May. Available at: http://www.rollingstone.com/culture/features/will-virtual-reality-change-your-life-20160523 (accessed: 10 July 2017).
Lackner, J. R. (2014). Motion sickness: more than nausea and vomiting, Experimental Brain Research 232(8), 2493–2510. DOI:10.1007/s00221-014-4008-8.
LaViola, J. J. (2000). A discussion of cybersickness in virtual environments, ACM SIGCHI Bulletin 32(1), 47–56. DOI:10.1145/333329.333344.
Lee, W.-T., et al. (2017). High-resolution 360 video foveated stitching for real-time VR, Computer Graphics Forum 36(7), 115–123. DOI:10.1111/cgf.13277.
Liu, C. L. (2014). A study of detecting and combating cybersickness with fuzzy control for the elderly within 3D virtual stores, International Journal of Human–Computer Studies 72(12), 796–804. DOI:10.1016/j.ijhcs.2014.07.002.
Llorach, G., Evans, A. and Blat, J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system, in: 20th ACM Symposium on Virtual Reality Software and Technology — VRST’14, pp. 137–140. DOI:10.1145/2671015.2671120.
Lo, W. T. and So, R. H. Y. (2001). Cybersickness in the presence of scene rotational movements along different axes, Applied Ergonomics 32, 1–14. DOI:10.1016/S0003-6870(00)00059-4.
Lopez, C. and Blanke, O. (2011). The thalamocortical vestibular system in animals and humans, Brain Research Reviews 67(1–2), 119–146. DOI:10.1016/j.brainresrev.2010.12.002.
Lopez, C., Blanke, O. and Mast, F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis, Neuroscience 212, 159–179. DOI:10.1016/j.neuroscience.2012.03.028.
Merhi, O., Faugloire, E., Flanagan, M. and Stoffregen, T. A. (2007). Motion sickness, console video games, and head-mounted displays, Human Factors 49(5), 920–934. DOI:10.1518/001872007X230262.
Moss, J. D., Austin, J., Salley, J., Coats, J., Williams, K. and Muth, E. R. (2011). The effects of display delay on simulator sickness, Displays 32(4), 159–168. DOI:10.1016/j.displa.2011.05.010.
Munafo, J., Diedrick, M. and Stoffregen, T. A. (2017). The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects, Experimental Brain Research 235(3), 889–901. DOI:10.1007/s00221-016-4846-7.
Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A. and Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time, Physiology and Behavior 151, 583–590. DOI:10.1016/j.physbeh.2015.08.043.
Nichols, S. (2000). Individual characteristics and experiences of virtual reality induced symptoms and effects, in: XIV Triennal Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Society, Vol. 1, pp. 538–541. DOI:10.1177/154193120004400514.
Nishiike, S., Okazaki, S., Watanabe, H., Akizuki, H., Imai, T., Uno, A., Kitahara, T., Horii, A., Takeda, N. and Inohara, H. (2013). The effect of visual–vestibulosomatosensory conflict induced by virtual reality on postural stability in humans, Journal of Medical Investigation: JMI 60(3–4), 236–239. DOI:10.2152/jmi.60.236.
Oman, C. M. (1988). Motion sickness: a synthesis and evaluation of the sensory conflict theory, Canadian Journal of Physiology Pharmacology 68, 294–303.
Oman, C. M. (2012). Are evolutionary hypotheses for motion sickness ‘just-so’ stories?, Journal of Vestibular Research: Equilibrium and Orientation 22(2–3), 117–127. DOI:10.3233/VES-2011-0432.
Padmanaban, N., et al. (2017). Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays, Proceedings of the National Academy of Sciences of the United States of America 114(9), 2183–2188. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28193871.
Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F. and Ghulyan-Bedikian, V. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety, Journal of Vestibular Research: Equilibrium and Orientation 23(4–5), 203–210. DOI:10.3233/VES-130501.
Palmisano, S., Allison, R. S., Schira, M. M. and Barry, R. J. (2015). Future challenges for vection research: definitions, functional significance, measures, and neural bases, Frontiers in Psychology 6, 193. DOI:10.3389/fpsyg.2015.00193.
Palmisano, S., Mursic, R. and Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift, Displays 46, 1–8. DOI:10.1016/j.displa.2016.11.001.
Peck, T. C., Fuchs, H. and Whitton, M. C. (2011). An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces, in: Proceedings of the IEEE Virtual Reality, pp. 55–62. DOI:10.1109/VR.2011.5759437.
Pelargos, P. E., Nagasawa, D. T., Lagman, C., Tenn, S., Demos, J. V., Lee, S. J., Bui, T. T., Barnette, N. E., Bhatt, N. S., Ung, N., Bari, A., Martin, N. A. and Yang, I. (2016). Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery, Journal of Clinical Neuroscience 35, 1–4. DOI:10.1016/j.jocn.2016.09.002.
Probst, T., Straube, A. and Bles, W. (1985). Differential effects of ambivalent visual–vestibular–somatosensory stimulation on the perception of self-motion, Behavioural Brain Research 16(1), 71–79. DOI:10.1016/0166-4328(85)90083-X.
Prsa, M., Gale, S. and Blanke, O. (2012). Self-motion leads to mandatory cue fusion across sensory modalities, Journal of Neurophysiology 108(8), 2282–2291. DOI:10.1152/jn.00439.2012.
Reason, J. T. (1978). Motion sickness adaptation: a neural mismatch model, Journal of the Royal Society of Medicine 71(11), 819–829. DOI:10.1177/014107687807101109.
Reason, J. T. and Brand, J. J. (1975). Motion Sickness. Academic Press, New York, NY.
Rebenitsch, L. and Owen, C. (2014). Individual variation in susceptibility to cybersickness, in: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 309–317. DOI:10.1145/2642918.2647394.
Rebenitsch, L. and Owen, C. (2016). Review on cybersickness in applications and visual displays, Virtual Reality 20(2), 101–125. DOI:10.1007/s10055-016-0285-9.
Redding, G. M., Rossetti, Y. and Wallace, B. (2005). Applications of prism adaptation: a tutorial in theory and method, Neuroscience Biobehavioural Review 29(3), 431–444.
Reed-Jones, R. J., Reed-Jones, J. G., Trick, L. M. and Vallis, L. A. (2007). Can galvanic vestibular stimulation reduce simulator adaptation syndrome?, in: Proceedings of the Fourth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 534–540. Available at: http://www.psychology.uoguelph.ca/faculty/trick/Documents/Articles/086_ReedJonesTrick.pdf.
Regan, E. C. (1995). Some evidence of adaptation to immersion in virtual reality, Displays 16(3), 135–139. DOI:10.1016/0141-9382(96)81213-3.
Riccio, G. E. and Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability, Ecological Psychology 3(3), 195–240.
Riecke, B. E., Bodenheimer, B., McNamara, T. P., Williams, B., Peng, P. and Feuereissen, D. (2010). Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice, in: Spatial Cognition VII. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 6222, pp. 234–247. DOI:10.1007/978-3-642-14749-4_21.
Sharples, S., Cobb, S., Moody, A. and Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems, Displays 29(2), 58–69. DOI:10.1016/j.displa.2007.09.005.
Smart, L. J., Stoffregen, T. A. and Benoit, B. G. (2002). Visually induced motion sickness predicted by postural instability, Human Factors 44(3), 451–465. DOI:10.1518/0018720024497745.
Snyder, L. (1999). This way up: illusions and internal models in the vestibular system, Nature Neuroscience 2(5), 396–398. DOI:10.1038/8056.
So, R. H. Y. and Lo, W. T. (1999). Cybersickness: an experimental study to isolate the effects of rotational scene oscillations, in: Proceedings of the IEEE Virtual Reality, pp. 237–241. DOI:10.1109/VR.1999.756957.
Stanney, K. M., Hale, K. S., Nahmens, I. and Kennedy, R. S. (2003). What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience, Human Factors 45(3), 504–520. DOI:10.1518/hfes.45.3.504.27254.
Stanney, K. M. and Kennedy, R. S. (1998). Aftereffects from virtual environment exposure: how long do they last?, Proceedings of the Human Factors and Ergonomics Society Annual Meeting 42(21), 1476–1480. DOI:10.1177/154193129804202103.
Stanney, K. M., Kennedy, R. S. and Drexler, J. M. (1997). Cybersickness is not simulator sickness, in: Proceedings of the Human Factors and Ergonomics Society 41st Annual Meeting, pp. 1138–1142. DOI:10.1177/107118139704100292.
Stanney, K. M., Kennedy, R. S., Drexler, J. M. and Harm, D. L. (1999). Motion sickness and proprioceptive aftereffects following virtual environment exposure, Applied Ergonomics 30(1), 27–38. DOI:10.1016/S0003-6870(98)00039-8.
Stanney, K. M., Kingdon, K. S., Graeber, D. and Kennedy, R. S. (2002). Human performance in immersive virtual environments: effects of exposure duration, user control, and scene complexity, Human Performance 15(4), 339–366. DOI:10.1207/S15327043HUP1504.
Stein, B. E., London, N., Wilkinson, L. K. and Price, D. D. (1996). Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis, Journal of Cognitive Neuroscience 8(6), 497–506.
Stoffregen, T. A., Hettinger, L. J., Haas, M. W., Roe, M. M. and Smart, L. J. (2000). Postural instability and motion sickness in a fixed-base flight simulator, Human Factors 42(3), 458–469. DOI:10.1518/001872000779698097.
Stoffregen, T. A. and Smart, L. J. (1998). Postural instability precedes motion sickness, Brain Research Bulletin 47(5), 437–448. DOI:10.1016/S0361-9230(98)00102-6.
Sutherland, I. E. (1968). A head-mounted three dimensional display, in: Proceedings of Fall Joint Computer Conference — AFIPS’68, Part I, pp. 757–764. ACM, New York, NY. DOI:10.1145/1476589.1476686.
Treisman, M. (1977). Motion sickness: an evolutionary hypothesis, Science 197(4302), 493–495. DOI:10.1126/science.301659.
Valmaggia, L. R., Latif, L., Kempton, M. J. and Rus-Calafell, M. (2016). Virtual reality in the psychological treatment for mental health problems: an systematic review of recent evidence, Psychiatry Research 236, 189–195. DOI:10.1016/j.psychres.2016.01.015.
Van Ombergen, A., Van Rompaey, V., Maes, L. K., Van de Heyning, P. H. and Wuyts, F. L. (2016). Mal de debarquement syndrome: a systematic review, Journal of Neurology 263(5), 843–854. DOI:10.1007/s00415-015-7962-6.
Verschure, P. F. M. J. (2011). Neuroscience, virtual reality and neurorehabilitation: brain repair as a validation of brain theory, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 2254–2257. DOI:10.1109/IEMBS.2011.6090428.
Villard, S. J., Flanagan, M. B., Albanese, G. M. and Stoffregen, T. A. (2008). Postural instability and motion sickness in a virtual moving room, Human Factors 50(2), 332–345. DOI:10.1518/001872008X250728.
Viñas-Diz, S. and Sobrido-Prieto, M. (2016). Virtual reality for therapeutic purposes in stroke: a systematic review, Neurología (English Edition) 31(4), 255–277. DOI:10.1016/j.nrleng.2015.06.007.
Wada, T., Fujisawa, S. and Doi, S. (2016). Analysis of driver’s head tilt using a mathematical model of motion sickness, International Journal of Industrial Ergonomics 63, 89–97. DOI:10.1016/j.ergon.2016.11.003.
Wada, T. and Yoshida, K. (2016). Effect of passengers’ active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars, Ergonomics 59(8), 1050–1059. DOI:10.1080/00140139.2015.1109713.
Wang, J. and Lewis, R. F. (2016). Contribution of intravestibular sensory conflict to motion sickness and dizziness in migraine disorders, Journal of Neurophysiology 116(4), 1586–1591. DOI:10.1152/jn.00345.2016.
Warwick-Evans, L. and Beaumont, S. (1995). An experimental evaluation of sensory conflict versus postural control theories of motion sickness, Ecological Psychology 7(3), 163–179. DOI:10.1207/s15326969eco0703_1.
Weech, S. and Troje, N. F. (2017). Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation, Multisensory Research 30(1), 65–90. DOI:10.1163/22134808-00002545.
Wenzel, R., Bartenstein, P., Dieterich, M., Danek, A., Weindl, A., Minoshima, S., Ziegler, S., Schwaiger, M. and Brandt, T. (1996). Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study, Brain 119(1), 101–110. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8624674 (accessed: 18 July 2017).
Williams, B., Narasimham, G., Rump, B., McNamara, T. P., Carr, T. H., Rieser, J. and Bodenheimer, B. (2007). Exploring large virtual environments with an HMD when physical space is limited, in: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization — APGV’07, p. 41. DOI:10.1145/1272582.1272590.
Wright, W. G. (2014). Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds, Frontiers in Systems Neuroscience 8, 56. DOI:10.3389/fnsys.2014.00056.
Young, L. R., Dichgans, J., Murphy, R. and Brandt, T. (1973). Interaction of optokinetic and vestibular stimuli in motion perception, Acta Oto-Laryngologica 76(1–6), 24–31. DOI:10.3109/00016487309121479.
Zacharias, G. L. and Young, L. R. (1981). Influence of combined visual and vestibular cues on human perception and control of horizontal rotation, Experimental Brain Research 41(2), 159–171. DOI:10.1007/BF00236605.
Zanbaka, C., Lok, B., Babu, S., Xiao, D., Ulinski, A. and Hodges, L. F. (2004). Effects of travel technique on cognition in virtual environments, in: Proceedings of the Virtual Reality Annual International Symposium, pp. 149–156. DOI:10.1109/VR.2004.1310068.
Zu Eulenburg, P., Caspers, S., Roski, C. and Eickhoff, S. B. (2012). Meta-analytical definition and functional connectivity of the human vestibular cortex, NeuroImage 60(1), 162–169. DOI:10.1016/j.neuroimage.2011.12.032.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 7116 | 1374 | 104 |
Full Text Views | 975 | 83 | 21 |
PDF Views & Downloads | 814 | 117 | 20 |
In the past decade, there has been a rapid advance in Virtual Reality (VR) technology. Key to the user’s VR experience are multimodal interactions involving all senses. The human brain must integrate real-time vision, hearing, vestibular and proprioceptive inputs to produce the compelling and captivating feeling of immersion in a VR environment. A serious problem with VR is that users may develop symptoms similar to motion sickness, a malady called cybersickness. At present the underlying cause of cybersickness is not yet fully understood. Cybersickness may be due to a discrepancy between the sensory signals which provide information about the body’s orientation and motion: in many VR applications, optic flow elicits an illusory sensation of motion which tells users that they are moving in a certain direction with certain acceleration. However, since users are not actually moving, their proprioceptive and vestibular organs provide no cues of self-motion. These conflicting signals may lead to sensory discrepancies and eventually cybersickness. Here we review the current literature to develop a conceptual scheme for understanding the neural mechanisms of cybersickness. We discuss an approach to cybersickness based on sensory cue integration, focusing on the dynamic re-weighting of visual and vestibular signals for self-motion.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 7116 | 1374 | 104 |
Full Text Views | 975 | 83 | 21 |
PDF Views & Downloads | 814 | 117 | 20 |