Older adults exhibit greater multisensory response time (RT) facilitation by violating the race model more than young adults; this is commonly interpreted as an enhancement in perception. Older adults typically exhibit wider temporal binding windows (TBWs) and points of subjective simultaneity (PSS) that typically lie farther from true simultaneity as compared to young adults when simultaneity judgment (SJ) and temporal-order judgment (TOJ) tasks are utilized; this is commonly interpreted as an impairment in perception. Here we explore the relation between the three tasks in order to better assess audiovisual multisensory temporal processing in both young and older adults. Our results confirm previous reports showing that audiovisual RT, TBWs and PSSs change with age; however, we show for the first time a significant positive relation between the magnitude of race model violation in young adults as a function of the PSS obtained from the audiovisual TOJ task (r: 0.49, p: 0.007), that is absent in older adults (r: 0.13, p: 0.58). Furthermore, we find no evidence for the relation between race model violation as a function of the PSS obtained from the audiovisual SJ task in both young (r: −0.01, p: 0.94) and older adults (r: 0.1, p: 0.66). Our results confirm previous reports that (i) audiovisual temporal processing changes with age; (ii) distinct processes are likely involved in simultaneity and temporal-order perception; and (iii) common processing between race model violation and temporal-order judgment is impaired in the elderly.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adhikari, B. M., Goshorn, E. S., Lamichhane, B. and Dhamala, M. (2013). Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices, Brain Connect. 3, 536–545.
Allan, L. G. (1975). The relationship between judgments of successiveness, Percept. Psychophys. 18, 29–36.
Alm, M. and Behne, D. (2013). Audio-visual speech experience with age influences perceived audio-visual asynchrony in speech, J. Acoust. Soc. Am. 134, 3001–3010.
Babkoff, H. and Fostick, L. (2017). Age-related changes in auditory processing and speech perception: cross-sectional and longitudinal analyses, Eur. J. Ageing 14, 269–281.
Barnett-Cowan, M. and Harris, L. R. (2009). Perceived timing of vestibular stimulation relative to touch, light and sound, Exp. Brain Res. 198, 221–231.
Barnett-Cowan, M. and Harris, L. R. (2011). Temporal processing of active and passive head movement, Exp. Brain Res. 214, 27. DOI:10.1007/s00221-011-2802-0.
Basharat, A., Adams, M. S., Staines, W. R. and Barnett-Cowan, M. (2018). Simultaneity and temporal order judgments are coded differently and change with age: an event-related potential study, Front. Integr. Neurosci. 12, 15. DOI:10.3389/fnint.2018.00015.
Bedard, G. and Barnett-Cowan, M. (2016). Impaired timing of audiovisual events in the elderly, Exp. Brain Res. 234, 331–340.
Busey, T., Craig, J., Clark, C. and Humes, L. (2010). Age-related changes in visual temporal order judgment performance: relation to sensory and cognitive capacities, Vision Res. 50, 1628–1640.
Calvert, G. A., Hansen, P. C., Iversen, S. D. and Brammer, M. J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect, Neuroimage 14, 427–438.
Cardoso-Leite, P., Gorea, A. and Mamassian, P. (2007). Temporal order judgment and simple reaction times: evidence for a common processing system, J. Vis. 7, 11. DOI:10.1167/7.6.11.
Chan, J. S., Kaiser, J., Brandl, M., Matura, S., Prvulovic, D. J., Hogan, M. and Naumer, M. J. (2015). Expanded temporal binding windows in people with mild cognitive impairment, Curr. Alzheimer Res. 12, 61–68.
Chan, J. S., Connolly, S. K. and Setti, A. (2018). The number of stimulus-onset asynchronies affects the perception of the sound-induced flash illusion in young and older adults, Multisens. Res. 31, 175–190.
Chan, Y. M., Pianta, M. J. and McKendrick, A. M. (2014a). Older age results in difficulties separating auditory and visual signals in time, J. Vis. 14, 13. DOI:10.1167/14.11.13.
Chan, Y. M., Pianta, M. J. and McKendrick, A. M. (2014b). Reduced audiovisual recalibration in the elderly, Front. Aging Neurosci. 6, 226. DOI:10.3389/fnagi.2014.00226.
Colonius, H. and Diederich, A. (2006). The race model inequality: interpreting a geometric measure of the amount of violation, Psychol. Rev. 113, 148–154.
Couth, S., Gowan, E. and Poliakoff, E. (2017). Using race model violation to explore multisensory responses in older adults: enhanced multisensory integration or slower unisensory processing?, Multisens. Res. 31, 151–174.
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S. and Cabeza, R. (2007). Que PASA? The posterior–anterior shift in aging, Cereb. Cortex 18, 1201–1209.
Dhamala, M., Assisi, C. G., Jirsa, V. K., Steinberg, F. L. and Kelso, J. A. S. (2007). Multisensory integration for timing engages different brain networks, Neuroimage 34, 764–773.
Diaconescu, A. O., Hasher, L. and McIntosh, A. R. (2013). Visual dominance and multisensory integration changes with age, Neuroimage 65, 152–166.
Diederich, A. and Colonius, H. (2015). The time window of multisensory integration: relating reaction times and judgments of temporal order, Psychol. Rev. 122, 232–241.
Diederich, A., Colonius, H. and Schomburg, A. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration model, Neuropsychologia 46, 2556–2562.
Fabiani, M. (2012). It was the best of times, it was the worst of times: a psychophysiologist’s view of cognitive aging, Psychophysiology 49, 283–304.
Falkenstein, M., Yordanova, J. and Kolev, V. (2006). Effects of aging on slowing of motor-response generation, Int. J. Psychophysiol. 59, 22–29.
Freiherr, J., Lundström, J. N., Habel, U. and Reetz, H. (2013). Multisensensory integration mechanisms during aging, Front. Hum. Neurosci. 7, 863. DOI:10.3389/fnhum.2013.00863.
Gao, F., Edden, R. A. E., Li, M., Puts, N. A. J., Wang, G., Liu, C., Zhao, B., Wang, H., Bai, X., Zhao, C., Wang, X. and Barker, P. B. (2013). Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels, Neuroimage 78, 75–82.
Ghazanfar, A. A. and Schroeder, C. E. (2006). Is neocortex essentially multisensory?, Trends Cogn. Sci. 10, 278–285.
Giard, M. H. and Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study, J. Cogn. Neurosci. 11, 473–490.
Gondan, M. (2010). A permutation test for the race model inequality, Behav. Res. Meth. 42, 23–28.
Gondan, M. and Minakata, K. (2016). A tutorial on testing the race model inequality, Atten. Percept. Psychophys. 78, 723–735.
Gordon-Salant, S. and Fitzgibbons, P. J. (1999). Profile of auditory temporal processing in older listeners, J. Speech Lang. Hear. Res. 42, 300–311.
Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., Pietrini, P., Wagner, E. and Haxby, J. V. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location, J. Neurosci. 14, 1450–1462.
Hariston, W. D., Laurienti, P. J., Mishra, G., Burdette, J. H. and Wallace, M. T. (2003). Multisensory enhancement of localization under conditions of induced myopia, Exp. Brain Res. 152, 404–408.
Hay-McCutcheon, M. J., Pisoni, D. B. and Hunt, K. K. (2009). Audiovisual asynchrony detection and speech perception in hearing-impaired listeners with cochlear implants: a preliminary analysis, Int. J. Audiol. 48, 321–333.
Hillock, A. R., Powers, A. R. and Wallace, M. T. (2011). Binding of sights and sounds: age-related changes in audiovisual temporal processing, Neuropsychologica 49, 461–467.
Hillock-Dunn, A. and Wallace, M. T. (2012). Developmental changes in the multisensory temporal binding window persist into adolescence, Dev. Sci. 15, 688–696.
Hirsh, I. J. and Sherrick Jr, C. E. (1961). Perceived order in different sense modalities, J. Exp. Psychol. 62, 423–432.
Innes, B. R. and Otto, T. U. (2019). A comparative analysis of response times shows that multisensory benefits and interactions are not equivalent, Sci. Rep. 9, 2921. DOI:10.1038/s41598-019-39924-6.
King, A. J. and Palmer, A. R. (1985). Integration of visual and auditory information in bimodal neurones in the Guinea-pig superior colliculus, Exp. Brain Res. 60, 492–500.
Lacherez, P., Turner, L., Lester, R., Burns, Z. and Wood, J. M. (2014). Age-related changes in perception of movement in driving scenes, Ophthalm. Physiol. Opt. 34, 445–451.
Laurienti, P. J., Burdette, J. H., Maldjian, J. A. and Wallace, M. T. (2006). Enhanced multisensory integration in older adults, Neurobiol. Aging 27, 1155–1163.
Lewkowicz, D. J. (1996). Perception of auditory–visual temporal synchrony in human infants, J. Exp. Psychol. Hum. Percept. Perform. 22, 1094–1106.
Linares, D. and Holcombe, A. O. (2014). Differences in perceptual latency estimated from judgments of temporal order, simultaneity and duration are inconsistent, i-Perception 5, 559–571.
Liu, X. Z. and Yan, D. (2007). Ageing and hearing loss, J. Pathol. 211, 188–197.
Love, S. A., Petrini, K., Cheng, A. and Pollick, F. E. (2013). A psychophysical investigation of differences between synchrony and temporal order judgments, PloS One 8, e54798. DOI:10.1371/journal.pone.0054798.
Lupo, J. and Barnett-Cowan, M. (2018). Impaired perceived timing of falls in the elderly, Gait Posture 59, 40–45.
Maguinness, C., Setti, A., Burke, K., Kenny, R. A. and Newell, F. N. (2011). The effect of combined sensory and semantic components on audio–visual speech perception in older adults, Front. Aging Neurosci. 3, 19. DOI:10.3389/fnagi.2011.00019.
Mahoney, J. R. and Verghese, J. (2018). Visual-somatosensory integration and quantitative gait performance in aging, Front. Aging Neurosci. 10, 377. DOI:10.3389/fnagi.2018.00377.
Mahoney, J. R. and Verghese, J. (2019). Using the race model inequality to quantify behavioral multisensory integration effects, J. Vis. Exp. 147, e59575. DOI:10.3791/59575.
Mahoney, J. R., Li, P. C. C., Oh-Park, M., Verghese, J. and Holtzer, R. (2011). Multisensory integration across the senses in young and old adults, Brain Res. 1426, 43–53.
Mahoney, J. R., Verghese, J., Dumas, K., Wang, C. and Holtzer, R. (2012). The effect of multi-sensory cues on attention in aging, Brain Res. 1472, 63–73.
Mahoney, J. R., Holtzer, R. and Verghese, J. (2014). Visual-somatosensory integration and balance: evidence for psychophysical integrative differences in aging, Multisens. Res. 27, 17–42.
Mahoney, J. R., Dumas, K. and Holtzer, R. (2015). Visual-somatosensory integration is linked to physical activity level in older adults, Multisens. Res. 28, 11–29.
Mahoney, J. R., Cotton, K. and Verghese, J. (2018). Multisensory integration predicts balance and falls in older adults, J. Gerontol. A Biol. Sci. Med. Sci. gly245. DOI:10.1093/gerona/gly245.
Mégevand, P., Molholm, S., Nayak, A. and Foxe, J. J. (2013). Recalibration of the multisensory temporal window of integration results from changing task demands, PloS One 8, e71608. DOI:10.1371/journal.pone.0071608.
Meredith, M. A. and Stein, B. E. (1983). Interactions among converging sensory inputs in the superior colliculus, Science 221, 389–391.
Meredith, M. A. and Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration, J. Neurophysiol. 56, 640–662.
Meredith, M. A. and Stein, B. E. (1996). Spatial determinants of multisensory integration in cat superior colliculus neurons, J. Neurophysiol. 75, 1843–1857.
Meredith, M. A., Nemitz, J. W. and Stein, B. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I Temporal factors, J. Neurosci. 7, 3215–3229.
Miller, J. (1982). Divided attention: evidence for co-activation with redundant signals, Cogn. Psychol. 14, 247–279.
Miller, J. (2016). Statistical facilitation and the redundant signals effect: what are race and coactivation models?, Atten. Percept. Psychophys. 78, 516–519.
Miller, J. and Schwarz, W. (2006). Dissociations between reaction times and temporal order judgments: a diffusion model approach, J. Exp. Psychol. Hum. Percept. Perform. 32, 349–412.
Mitrani, L., Shekerdjiiski, S. and Yakimoff, N. (1986). Mechanisms and asymmetries in visual perception of simultaneity and temporal order, Biol. Cybern. 54, 159–165.
Miyazaki, M., Yamamoto, S., Uchida, S. and Kitazawa, S. (2006). Bayesian calibration of simultaneity in tactile temporal order judgment, Nat. Neurosci. 9, 875–877.
Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E. and Foxe, J. J. (2002). Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study, Brain Res. Cogn. Brain Res. 14, 115–128.
Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M. and Laurienti, P. J. (2011). Multisensory integration and aging, in: The Neural Bases of Multisensory Processes, M. Murray and M. Wallace (Eds), pp. 381–394. CRC Press, Boca Raton, FL, USA.
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L. and Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment, J. Am. Geriatr. Soc. 53, 695–699.
Otto, T. U. (in press). RSE-box: an analysis and modelling package to study response times to multiple signals, Quant. Method. Psychol.
Otto, T. U. and Mamassian, P. (2012). Noise and correlations in parallel perceptual decision making, Curr. Biol. 22, 1391–1396.
Otto, T. U. and Mamassian, P. (2017). Multisensory decisions: the test of a race model, its logic, and power, Multisens. Res. 30, 1–24.
Peiffer, A. M., Mozolic, J. L., Hugenschmidt, C. E. and Laurienti, P. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection task, NeuroReport 18, 1077–1081.
Poliakoff, E., Shore, D. I., Lowe, C. and Spence, C. (2006). Visuotactile temporal order judgements in ageing, Neurosci. Lett. 396, 207–211.
Porges, E. C., Woods, A. J., Edden, R. A. E., Puts, N. A. J., Harris, A. D., Chen, H., Garcia, A. M., Seider, T. R., Lamb, D. G., Williamson, J. B. and Cohen, R. A. (2017). Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults, Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 38–44.
Powers, A. R., Hillock, A. R. and Wallace, M. T. (2009). Perceptual training narrows the temporal binding window of multisensory binding, J. Neurosci. 29, 12265–12274.
Raab, D. H. (1962). Statistical facilitation of simple reaction times, Trans. N. Y. Acad. Sci. 24, 574–590.
Ramkhalawansingh, R., Keshavarz, B., Haycock, B., Shahab, S. and Campos, J. L. (2016). Age differences in visual-auditory self-motion perception during a simulated driving task, Front. Psychol. 7, 595. DOI:10.3389/fpsyg.2016.00595.
Rawson, N. E. (2006). Olfactory loss in aging, Science’s SAGE KE 2006, pe6. DOI:10.1126/sageke.2006.5.pe6.
Roudaia, E., Sekuler, A. B., Bennett, P. J. and Sekuler, R. (2013). Aging and audiovisual and multi-cue integration in motion, Front. Psychol. 4, 267. DOI:10.3389/fpsyg.2013.00267.
Schroeder, C. E. and Foxe, J. (2005). Multisensory contributions to low level, ‘unisensory’ processing, Curr. Opin. Neurobiol. 15, 454–458.
Sekuler, R., Sekuler, A. B. and Lau, R. (1997). Sound alters visual motion perception, Nature 385, 308.
Setti, A., Burke, K. E., Kenny, R. A. and Newell, F. N. (2011a). Is inefficient multisensory processing associated with falls in older people?, Exp. Brain Res. 209, 375–384.
Setti, A., Finnigan, S., Sobolewski, R., McLaren, L., Robertson, I., Reilly, R. B., Kenny, R. A. and Newell, F. N. (2011b). Audiovisual temporal discrimination is less efficient with aging: an event-related potential study, NeuroReport 22, 554–558.
Setti, A., Burke, K. E., Kenny, R. A. and Newell, F. N. (2013). Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processes, Front. Psychol. 4, 575. DOI:10.3389/fpsyg.2013.00575.
Setti, A., Stapleton, J., Leahy, D., Walsh, C., Kenny, R. A. and Newell, F. N. (2014). Improving the efficiency of multisensory integration in older adults: audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion, Neuropsychologia 61, 259–268.
Shams, L., Kamitani, Y. and Shimojo, S. (2000). What you see is what you hear, Nature 408, 788.
Shams, L., Kamitani, Y. and Shimojo, S. (2002). Visual illusion induced by sound, Cognitive Brain Research 14, 147–152.
Shams, L., Ma, W. J. and Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept, Audit. Vestib. Syst. 16, 1923–1927.
Spear, P. D. (1993). Neural bases of visual deficits during aging, Vision Res. 33, 2589–2609.
Stein, B. E. and Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron, Nat. Rev. Neurosci. 9, 255–266.
Sternberg, S. and Knoll, R. L. (1973). The perception of temporal order: fundamental issues and a general model, in: Attention and Performance IV, S. Kornblum (Ed.), pp. 629–685. Academic Press, New York, NY, USA.
Takayama, H., Ogawa, N., Yamamoto, M., Asanuma, M., Hirata, H. and Ota, Z. (1992). Age-related changes in cerebrospinal fluid γ-Aminobutyric acid concentration, Eur. J. Clin. Chem. Clin. Biochem. 30, 271–274.
Van Eijk, R. L. J., Kohlrausch, A., Juola, J. F. and van de Par, S. (2008). Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type, Percept. Psychophys. 70, 955–968.
Vatakis, A., Navarra, J., Soto-Faraco, S. and Spence, C. (2008). Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments, Exp. Brain Res. 185, 521–529.
Virsu, V., Lahti-Nuuttila, P. and Laasonen, M. (2003). Crossmodal temporal pro-cessing acuity impairment aggravates with age in developmental dyslexia, Neurosci. Lett. 336, 151–154.
Waszak, F. and Gorea, A. (2004). A new look at the relationship between perceptual and motor responses, Vis. Cogn. 11, 947–963.
Wise, A. and Barnett-Cowan, M. (2018). Perceived simultaneity and temporal order of audiovisual events following concussion, Front. Hum. Neurosci. 12, 139. DOI:10.3389/fnhum.2018.00139.
Wood, J. M. (2002). Age and visual impairment decrease driving performance as measured on a closed-road circuit, Hum. Fact. 44, 482–494.
Wu, J., Yang, W., Gao, Y. and Kimura, T. (2012). Age-related multisensory integration elicited by peripherally presented audiovisual stimuli, NeuroReport 23, 616–620.
Zampini, M., Shore, D. I. and Spence, C. (2003). Multisensory temporal order judgments: the role of hemispheric redundancy, Int. J. Psychophysiol. 50, 165–180.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1151 | 243 | 51 |
Full Text Views | 78 | 24 | 1 |
PDF Views & Downloads | 57 | 21 | 0 |
Older adults exhibit greater multisensory response time (RT) facilitation by violating the race model more than young adults; this is commonly interpreted as an enhancement in perception. Older adults typically exhibit wider temporal binding windows (TBWs) and points of subjective simultaneity (PSS) that typically lie farther from true simultaneity as compared to young adults when simultaneity judgment (SJ) and temporal-order judgment (TOJ) tasks are utilized; this is commonly interpreted as an impairment in perception. Here we explore the relation between the three tasks in order to better assess audiovisual multisensory temporal processing in both young and older adults. Our results confirm previous reports showing that audiovisual RT, TBWs and PSSs change with age; however, we show for the first time a significant positive relation between the magnitude of race model violation in young adults as a function of the PSS obtained from the audiovisual TOJ task (r: 0.49, p: 0.007), that is absent in older adults (r: 0.13, p: 0.58). Furthermore, we find no evidence for the relation between race model violation as a function of the PSS obtained from the audiovisual SJ task in both young (r: −0.01, p: 0.94) and older adults (r: 0.1, p: 0.66). Our results confirm previous reports that (i) audiovisual temporal processing changes with age; (ii) distinct processes are likely involved in simultaneity and temporal-order perception; and (iii) common processing between race model violation and temporal-order judgment is impaired in the elderly.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1151 | 243 | 51 |
Full Text Views | 78 | 24 | 1 |
PDF Views & Downloads | 57 | 21 | 0 |