Sensory Substitution Devices (SSDs) are typically used to restore functionality of a sensory modality that has been lost, like vision for the blind, by recruiting another sensory modality such as touch or audition. Sensory substitution has given rise to many debates in psychology, neuroscience and philosophy regarding the nature of experience when using SSDs. Questions first arose as to whether the experience of sensory substitution is represented by the substituted information, the substituting information, or a multisensory combination of the two. More recently, parallels have been drawn between sensory substitution and synaesthesia, a rare condition in which individuals involuntarily experience a percept in one sensory or cognitive pathway when another one is stimulated. Here, we explore the efficacy of understanding sensory substitution as a form of ‘artificial synaesthesia’. We identify several problems with previous suggestions for a link between these two phenomena. Furthermore, we find that sensory substitution does not fulfil the essential criteria that characterise synaesthesia. We conclude that sensory substitution and synaesthesia are independent of each other and thus, the ‘artificial synaesthesia’ view of sensory substitution should be rejected.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amedi, A., Stern, W. M., Camprodon, J. A., Bermpohl, F., Merabet, L., Rotman, S., Hemond, C., Meijer, P. and Pascual-Leone, A. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex, Nat. Neurosci. 10, 687–689. DOI:10.1038/nn1912.
Arno, P., De Volder, A. G., Vanlierde, A., Wanet-Defalque, M.-C., Streel, E., Robert, A., Sanabria-Bohórquez, S. and Veraart, C. (2001). Occipital activation by pattern recognition in the early blind using auditory substitution for vision, NeuroImage 13, 632–645. DOI:10.1006/nimg.2000.0731.
Arnold, G. and Auvray, M. (2014). Perceptual learning: tactile letter recognition transfers across body surfaces, Multisens. Res. 27, 71–90. DOI:10.1163/22134808-00002443.
Arnold, G. and Auvray, M. (2018). Tactile recognition of visual stimuli: specificity versus generalization of perceptual learning, Vision Res. 152, 40–50. DOI:10.1016/j.visres.2017.11.007.
Arnold, G., Pesnot-Lerousseau, J. and Auvray, M. (2017). Individual differences in sensory substitution, Multisens. Res. 30, 579–600. DOI:10.1163/22134808-00002561.
Asher, J. E., Lamb, J. A., Brocklebank, D., Cazier, J.-B., Maestrini, E., Addis, L., Sen, M., Baron-Cohen, S. and Monaco, A. P. (2009). A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12, Am. J. Hum. Genet. 84, 279–285. DOI:10.1016/j.ajhg.2009.01.012.
Auvray, M. (2019). Multisensory and spatial processes in sensory substitution, Restor. Neurol. Neurosci. 37, 606–619. DOI:10.3233/RNN-190950.
Auvray, M. and Deroy, O. (2015). How do synesthetes experience the world?, in: Oxford Handbook of Philosophy of Perception, M. Matthen (Ed.), pp. 640–658. Oxford University Press, Oxford, UK. DOI:10.1093/oxfordhb/9780199600472.013.027.
Auvray, M. and Farina, M. (2017). Patrolling the boundaries of synaesthesia: a critical appraisal of transient and artificially induced forms of synaesthetic experiences, in: Sensory Blending: on Synaesthesia and Related Phenomena, O. Deroy (Ed.), pp. 248–274. Oxford University Press, Oxford, UK.
Auvray, M. and Myin, E. (2009). Perception with compensatory devices: from sensory substitution to sensorimotor extension, Cogn. Sci. 33, 1036–1058. DOI:10.1111/j.1551-6709.2009.01040.x.
Auvray, M., Hanneton, S. and O’Regan, J. K. (2007). Learning to perceive with a visuo–auditory substitution system: localisation and object recognition with ‘The Voice’, Perception 36, 416–430. DOI:10.1068/p5631.
Bach-y-Rita, P. and Kercel, S. W. (2003). Sensory substitution and the human–machine interface, Trends Cogn. Sci. 7, 541–646. DOI:10.1016/j.tics.2003.10.013.
Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B. and Scadden, L. (1969). Vision substitution by tactile image projection, Nature 221, 963–964. DOI:10.1038/221963a0.
Barnett, K. J., Foxe, J. J., Molholm, S., Kelly, S. P., Shalgi, S., Mitchell, K. J. and Newell, F. N. (2008). Differences in early sensory-perceptual processing in synesthesia: a visual evoked potential study, NeuroImage 43, 605–613. DOI:10.1016/j.neuroimage.2008.07.028.
Baron-Cohen, S., Burt, L., Smith-Laittan, F., Harrison, J. and Bolton, P. (1996). Synaesthesia: prevalence and familiality, Perception 25, 1073–1079. DOI:10.1068/p251073.
Bermejo, F., Di Paolo, E. A., Hüg, M. X. and Arias, C. (2015). Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices, Front. Psychol. 6, 679. DOI:10.3389/fpsyg.2015.00679.
Block, N. (2003). Tactile sensation via spatial perception, Trends Cogn. Sci. 7, 285–286. DOI:10.1016/S1364-6613(03)00132-3.
Bologna, G., Deville, B. and Pun, T. (2009). Blind navigation along a sinuous path by means of the See ColOr interface, in: International Work-Conference on the Interplay Between Natural and Artificial Computation, J. Mira, J. M. Ferrández, J. R. Álvarez, F. de la Paz and F. J. Toledo (Eds), pp. 235–243. Springer, Berlin, Germany. DOI:10.1007/978-3-642-02267-8_26.
Bor, D., Rothen, N., Schwartzman, D. J., Clayton, S. and Seth, A. K. (2015). Adults can be trained to acquire synesthetic experiences, Sci. Rep. 4, 7089. DOI:10.1038/srep07089.
Brang, D. and Ramachandran, V. S. (2011). Survival of the synesthesia gene: why do people hear colors and taste words?, PLoS Biol. 9, e1001205. DOI:10.1371/journal.pbio.1001205.
Brown, D. J., Macpherson, T. and Ward, J. (2011). Seeing with sound? Exploring different characteristics of a visual-to-auditory sensory substitution device, Perception 40, 1120–1135. DOI:10.1068/p6952.
Carton, A. and Dunne, L. E. (2013). Tactile distance feedback for firefighters: design and preliminary evaluation of a sensory augmentation glove, in: Proceedings of the 4th Augmented Human International Conference, pp. 58–64. DOI:10.1145/2459236.2459247.
Cecchetti, L., Kupers, R., Ptito, M., Pietrini, P. and Ricciardi, E. (2016). Are supramodality and cross-modal plasticity the yin and yang of brain development? From blindness to rehabilitation, Front. Syst. Neurosci. 10, 89. DOI:10.3389/fnsys.2016.00089.
Chan, K. C., Murphy, M. C., Bang, J. W., Sims, J., Kashkoush, J. and Nau, A. C. (2018). Functional MRI of sensory substitution in the blind, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5519–5522. Honolulu, HI, USA. DOI:10.1109/EMBC.2018.8513622.
Chebat, D.-R., Schneider, F. C., Kupers, R. and Ptito, M. (2011). Navigation with a sensory substitution device in congenitally blind individuals, Neuroreport 22, 342–347. DOI:10.1097/WNR.0b013e3283462def.
Chebat, D.-R., Maidenbaum, S. and Amedi, A. (2015). Navigation using sensory substitution in real and virtual mazes, PloS ONE 10, e0126307. DOI:10.1371/journal.pone.0126307.
Clark, A. (2003). Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford University Press, Oxford, UK.
Cohen Kadosh, R., Henik, A., Catena, A., Walsh, V. and Fuentes, L. J. (2009). Induced cross-modal synaesthetic experience without abnormal neuronal connections, Psychol. Sci. 20, 258–265. DOI:10.1111/j.1467-9280.2009.02286.x.
Cytowic, R. E. (1989). Synesthesia and mapping of subjective sensory dimensions, Neurology 39, 849–850. DOI:10.1212/WNL.39.6.849.
De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppens, A., Michel, C. and Veraart, C. (1999). Changes in occipital cortex activity in early blind humans using a sensory substitution device, Brain Res. 826, 128–134. DOI:10.1016/S0006-8993(99)01275-5.
Deen, B., Saxe, R. and Bedny, M. (2015). Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex, J. Cogn. Neurosci. 27, 1633–1647. DOI:10.1162/jocn_a_00807.
Deroy, O. and Auvray, M. (2012). Reading the world through the skin and ears: a new perspective on sensory substitution, Front. Psychol. 3, 457. DOI:10.3389/fpsyg.2012.00457.
Deroy, O. and Auvray, M. (2014). A crossmodal perspective on sensory substitution, in: Perception and Its Modalities, D. Stokes, M. Matthen and S. Biggs (Eds), pp. 327–349. Oxford University Press, Oxford, UK.
Deroy, O. and Spence, C. (2013). Why we are not all synesthetes (not even weakly so), Psychon. Bull. Rev. 20, 643–664. DOI:10.3758/s13423-013-0387-2.
Deroy, O., Fasiello, I., Hayward, V. and Auvray, M. (2016). Differentiated audio-tactile correspondences in sighted and blind individuals, J. Exp. Psychol. Hum. Percept. Perform. 42, 1204–1214. DOI:10.1037/xhp0000152.
Dixon, M. J., Smilek, D., Cudahy, C. and Merikle, P. M. (2000). Five plus two equals yellow, Nature 406, 365. DOI:10.1038/35019148.
Dormal, G. and Collignon, O. (2011). Functional selectivity in sensory-deprived cortices, J. Neurophysiol. 105, 2627–2630. DOI:10.1152/jn.00109.2011.
Eagleman, D. M., Kagan, A. D., Nelson, S. S., Sagaram, D. and Sarma, A. K. (2007). A standardized test battery for the study of synesthesia, J. Neurosci. Methods 159, 139–145. DOI:10.1016/j.jneumeth.2006.07.012.
Farina, M. (2013). Neither touch nor vision: sensory substitution as artificial synaesthesia?, Biol. Philos. 28, 639–655. DOI:10.1007/s10539-013-9377-z.
Grossenbacher, P. G. and Lovelace, C. T. (2001). Mechanisms of synesthesia: cognitive and physiological constraints, Trends Cogn. Sci. 5, 36–41. DOI:10.1016/S1364-6613(00)01571-0.
Haigh, A., Brown, D. J., Meijer, P. and Proulx, M. J. (2013). How well do you see what you hear? The acuity of visual-to-auditory sensory substitution, Front. Psychol. 4, 330. DOI:10.3389/fpsyg.2013.00330.
Hamilton-Fletcher, G., Mengucci, M. and Medeiros, F. (2016). Synaestheatre: sonification of coloured objects in space, in: Proceedings of the 2016 International Conference on Live Interfaces, pp. 252–256. Brighton, UK.
Hanneton, S., Auvray, M. and Durette, B. (2010). The Vibe: a versatile vision-to-audition sensory substitution device, Appl. Bionics Biomech. 7, 269–276. DOI:10.1080/11762322.2010.512734.
Hanneton, S., Hoellinger, T., Forma, V., Roby-Brami, A. and Auvray, M. (2020). Ears on the hand: reaching three-dimensional targets with an audio-motor device, Multisens. Res. 33, 433–455. DOI:10.1163/22134808-20191436.
Heimler, B. and Amedi, A. (2020). Task-selectivity in the sensory deprived brain and sensory substitution approaches for clinical practice: evidence from blindness, in: Multisensory Perception, K. Sathian and V. S. Ramachandran (Eds), pp. 321–342. Academic Press, London, UK. DOI:10.1016/B978-0-12-812492-5.00015-2.
Heimler, B., Weisz, N. and Collignon, O. (2014). Revisiting the adaptive and maladaptive effects of crossmodal plasticity, Neuroscience 283, 44–63. DOI:10.1016/j.neuroscience.2014.08.003.
Heimler, B., Striem-Amit, E. and Amedi, A. (2015). Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications, Curr. Opin. Neurobiol. 35, 169–177. DOI:10.1016/j.conb.2015.09.001.
Humphrey, N. (2006). Seeing Red: a Study in Consciousness. Harvard University Press, Cambridge, MA, USA.
Hurley, S. and Noë, A. (2003). Neural plasticity and consciousness, Biol. Philos. 18, 131–168. DOI:10.1023/A:1023308401356.
Jacobson, R. (2014). App helps the blind “see” with their ears, Nat. Geogr. Available at https://www.nationalgeographic.com/news/2014/4/140403-eyemusic-ssd-visual-impairment-software-science/.
Jäncke, L., Beeli, G., Eulig, C. and Hänggi, J. (2009). The neuroanatomy of grapheme–color synesthesia, Eur. J. Neurosci. 29, 1287–1293. DOI:10.1111/j.1460-9568.2009.06673.x.
Kaczmarek, K. A. (2011). The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation, Sci. Iran. 18, 1476–1485. DOI:10.1016/j.scient.2011.08.020.
Keeley, B. L. (2002). Making sense of the senses: individuating modalities in humans and other animals, J. Philos. 99, 5–28. DOI:10.5840/jphil20029915.
Kim, J.-K. and Zatorre, R. J. (2008). Generalized learning of visual-to-auditory substitution in sighted individuals, Brain Res. 1242, 263–275. DOI:10.1016/j.brainres.2008.06.038.
Kiverstein, J., Farina, M. and Clark, A. (2014). Substituting the senses, in: The Oxford Handbook of the Philosophy of Perception, M. Matthen (Ed.), pp. 659–675. Oxford University Press, Oxford, UK.
Kujala, T., Alho, K., Paavilainen, P., Summala, H. and Näätänen, R. (1992). Neural plasticity in processing of sound location by the early blind: an event-related potential study, Electroencephalogr. Clin. Neurophysiol. 84, 469–472. DOI:10.1016/0168-5597(92)90034-9.
Kupers, R. and Ptito, M. (2011). Insights from darkness: what the study of blindness has taught us about brain structure and function, in: Progress in Brain Research, Vol. 192, A. Green, C. E. Chapman, J. F. Kalaska and F. Lepore (Eds), pp. 17–31. Elsevier, Amsterdam, The Netherlands. DOI:10.1016/B978-0-444-53355-5.00002-6.
Kupers, R., Fumal, A., Maertens de Noordhout, A., Gjedde, A., Schoenen, J. and Ptito, M. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects, Proc. Natl Acad. Sci. U.S.A. 103, 13256–13260. DOI:10.1073/pnas.0602925103.
Kupers, R., Chebat, D. R., Madsen, K. H., Paulson, O. B. and Ptito, M. (2010). Neural correlates of virtual route recognition in congenital blindness, Proc. Natl Acad. Sci. U.S.A. 107, 12716–12721.
Levy-Tzedek, S., Hanassy, S., Abboud, S., Maidenbaum, S. and Amedi, A. (2012). Fast, accurate reaching movements with a visual-to-auditory sensory substitution device, Restor. Neurol. Neurosci. 30, 313–323. DOI:10.3233/RNN-2012-110219.
Levy-Tzedek, S., Riemer, D. and Amedi, A. (2014). Color improves “visual” acuity via sound, Front. Neurosci. 8, 358. DOI:10.3389/fnins.2014.00358.
Loomis, J. M., Klatzky, R. L. and Giudice, N. A. (2013). Sensory substitution of vision: importance of perceptual and cognitive processing, in: Assistive Technology for Blindness and Low Vision, R. Manduchi and S. Kurniawan (Eds), pp. 161–192. CRC Press, Boca Raton, FL, USA. DOI:10.1201/9781315216935.
Luke, D. P. and Terhune, D. B. (2013). The induction of synaesthesia with chemical agents: a systematic review, Front. Psychol. 4, 753. DOI:10.3389/fpsyg.2013.00753.
Maidenbaum, S., Abboud, S. and Amedi, A. (2014). Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation, Neurosci. Biobehav. Rev. 41, 3–15. DOI:10.1016/j.neubiorev.2013.11.007.
Martin, J.-R. and Le Corre, F. (2015). Sensory substitution is substitution, Mind Lang. 30, 209–233. DOI:10.1111/mila.12078.
Mattingley, J. B. (2009). Attention, automaticity, and awareness in synesthesia, Ann. N.Y. Acad. Sci. 1156, 141–167. DOI:10.1111/j.1749-6632.2009.04422.x.
Meijer, P. B. L. (1992). An experimental system for auditory image representations, IEEE Trans. Biomed. Eng. 39, 112–121. DOI:10.1109/10.121642.
Merabet, L. B., Battelli, L., Obretenova, S., Maguire, S., Meijer, P. and Pascual-Leone, A. (2009). Functional recruitment of visual cortex for sound encoded object identification in the blind, Neuroreport 20, 132–138. DOI:10.1097/WNR.0b013e32832104dc.
Mills, C. B. (1999). Digit synaesthesia: a case study using a Stroop-type test, Cogn. Neuropsychol. 16, 181–191. DOI:10.1080/026432999380951.
Murphy, M. C., Nau, A. C., Fisher, C., Kim, S.-G., Schuman, J. S. and Chan, K. C. (2016). Top-down influence on the visual cortex of the blind during sensory substitution, NeuroImage 125, 932–940. DOI:10.1016/j.neuroimage.2015.11.021.
Noë, A. (2004). Action in Perception. MIT Press, Boston, MA, USA.
O’Regan, J. K. (2011). Why Red Doesn’t Sound Like a Bell: Understanding the Feel of Consciousness. Oxford University Press, Oxford, UK.
O’Regan, J. K. and Noë, A. (2001). A sensorimotor account of vision and visual consciousness, Behav. Brain Sci. 24, 939–973. DOI:10.1017/S0140525X01000115.
Ortiz, T., Poch, J., Santos, J. M., Requena, C., Martinez, A. M., Ortiz-Teran, L., Turrero, A., Barcia, J., Nogales, R., Calvo, A., Martinez, J. M., Cordoba, J. L. and Pascual-Leone, A. (2011). Recruitment of occipital cortex during sensory substitution training linked to subjective experience of seeing in people with blindness, PLoS ONE 6, e23264. DOI:10.1371/journal.pone.0023264.
Pacherie, E. (1997). Du problème de Molyneux au problème de Bach-y-Rita, in: Perception et Intermodalité, Approches Actuelles du Problème de Molyneux, J. Proust (Ed.), pp. 255–293. Presses Universitaires de France, Paris, France.
Pascual-Leone, A. and Hamilton, R. (2001). The metamodal organization of the brain, in: Vision: from Neurons to Cognition, Progress in Brain Research, Vol. 134, C. Casanova and M. Ptito (Eds), pp. 427–446. Elsevier, Amsterdam, The Netherlands. DOI:10.1016/S0079-6123(01)34028-1.
Peltier, S., Stilla, R., Mariola, E., LaConte, S., Hu, X. and Sathian, K. (2007). Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception, Neuropsychologia 45, 476–483. DOI:10.1016/j.neuropsychologia.2006.03.003.
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W.-H. C., Cohen, L., Guazzelli, M. and Haxby, J. V. (2004). Beyond sensory images: object-based representation in the human ventral pathway, Proc. Natl Acad. Sci. U.S.A. 101, 5658–5663. DOI:10.1073/pnas.0400707101.
Poirier, C., De Volder, A. G. and Scheiber, C. (2007). What neuroimaging tells us about sensory substitution, Neurosci. Biobehav. Rev. 31, 1064–1070. DOI:10.1016/j.neubiorev.2007.05.010.
Prinz, J. (2006). Putting the brakes on enactive perception, Psyche 12, 1–19.
Proulx, M. and Stoerig, P. (2006). Seeing sounds and tingling tongues: qualia in synaesthesia and sensory substitution, Anthropol. Philos. 7, 135–150.
Proulx, M. J. (2010). Synthetic synaesthesia and sensory substitution, Consc. Cogn. 19, 501–503. DOI:10.1016/j.concog.2009.12.005.
Proulx, M. J., Stoerig, P., Ludowig, E. and Knoll, I. (2008). Seeing ‘where’ through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution, PloS ONE 3, e1840. DOI:10.1371/journal.pone.0001840.
Proulx, M. J., Brown, D. J., Pasqualotto, A. and Meijer, P. (2014). Multisensory perceptual learning and sensory substitution, Neurosci. Biobehav. Rev. 41, 16–25. DOI:10.1016/j.neubiorev.2012.11.017.
Proulx, M. J., Gwinnutt, J., Dell’Erba, S., Levy-Tzedek, S., de Sousa, A. A. and Brown, D. J. (2016). Other ways of seeing: from behavior to neural mechanisms in the online “visual” control of action with sensory substitution, Restor. Neurol. Neurosci. 34, 29–44. DOI:10.3233/rnn-150541.
Ptito, M., Moesgaard, S. M., Gjedde, A. and Kupers, R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind, Brain 128, 606–614. DOI:10.1093/brain/awh380.
Ptito, M., Fumal, A., Martens De Noordhout, A., Schoenen, J., Gjedde, A. and Kupers, R. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers, Exp. Brain Res. 184, 193–200. DOI:10.1007/s00221-007-1091-0.
Ptito, M., Iversen, K., Auvray, M., Deroy, O. and Kupers, R. (2018). Limits of the classical functionalist perspective on sensory substitution, in: Sensory Substitution and Augmentation, F. Macpherson (Ed.), pp. 130–149. Oxford University Press, Oxford, UK.
Reich, L., Szwed, M., Cohen, L. and Amedi, A. (2011). A ventral visual stream reading center independent of visual experience, Curr. Biol. 21, 363–368. DOI:10.1016/j.cub.2011.01.040.
Renier, L. and De Volder, A. (2013). Sensory substitution devices: creating “artificial synesthesias”, in: The Oxford Handbook of Synaesthesia, J. Simner and E. Hubbard (Eds), pp. 853–868. Oxford University Press, Oxford, UK.
Renier, L., Laloyaux, C., Collignon, O., Tranduy, D., Vanlierde, A., Bruyer, R. and De Volder, A. G. (2005). The Ponzo illusion with auditory substitution of vision in sighted and early-blind subjects, Perception 34, 857–867. DOI:10.1068/p5219.
Renier, L., Bruyer, R. and De Volder, A. G. (2006). Vertical-horizontal illusion present for sighted but not early blind humans using auditory substitution of vision, Percept. Psychophys. 68, 535–542. DOI:10.3758/BF03208756.
Ricciardi, E. and Pietrini, P. (2011). New light from the dark: what blindness can teach us about brain function, Curr. Opin. Neurol. 24, 357–363. DOI:10.1097/WCO.0b013e328348bdbf.
Rich, A. N. and Mattingley, J. B. (2002). Anomalous perception in synaesthesia: a cognitive neuroscience perspective, Nat. Rev. Neurosci. 3, 43–52. DOI:10.1038/nrn702.
Sadato, N., Pascual-Leone, A., Grafman, J., Ibañez, V., Deiber, M.-P., Dold, G. and Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects, Nature 380, 526–528. DOI:10.1038/380526a0.
Safran, A. B. and Sanda, N. (2015). Color synesthesia. Insight into perception, emotion, and consciousness, Curr. Opin. Neurol. 28, 36–44. DOI:10.1097/WCO.0000000000000169.
Sagiv, N., Heer, J. and Robertson, L. (2006). Does binding of synesthetic color to the evoking grapheme require attention?, Cortex 42, 232–242. DOI:10.1016/S0010-9452(08)70348-4.
Siegle, J. H. and Warren, W. H. (2010). Distal attribution and distance perception in sensory substitution, Perception 39, 208–223. DOI:10.1068/p6366.
Simner, J., Harrold, J., Creed, H., Monro, L. and Foulkes, L. (2009). Early detection of markers for synaesthesia in childhood populations, Brain 132, 57–64. DOI:10.1093/brain/awn292.
Stevenson, R. J. and Boakes, R. A. (2004). Sweet and sour smells: learned synesthesia between the senses of taste and smell, in: The Handbook of Multisensory Processing, G. A. Calvert, C. Spence and B. E. Stein (Eds), pp. 69–83. MIT Press, Cambridge, MA, USA.
Stevenson, R. J. and Tomiczek, C. (2007). Olfactory-induced synesthesias: a review and model, Psychol. Bull. 133, 294–309. DOI:10.1037/0033-2909.133.2.294.
Stewart, J. and Khatchatourov, A. (2007). Transparency_1, in: Enaction and Enactive Interfaces: a Handbook of Terms, A. Luciani and C. Cadoz (Eds), pp. 2990–2991. Enactive Systems Books.
Stiles, N. R. B. and Shimojo, S. (2015). Auditory sensory substitution is intuitive and automatic with texture stimuli, Sci. Rep. 5, 15628. DOI:10.1038/srep15628.
Striem-Amit, E. and Amedi, A. (2014). Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds, Curr. Biol. 24, 687–692. DOI:10.1016/j.cub.2014.02.010.
Striem-Amit, E., Dakwar, O., Hertz, U., Meijer, P., Stern, W., Pascual-Leone, A. and Amedi, A. (2011). The neural network of sensory-substitution object shape recognition, Funct. Neurol. Rehabil. Ergon. 1, 271–278.
Striem-Amit, E., Cohen, L., Dehaene, S. and Amedi, A. (2012). Reading with sounds: sensory substitution selectively activates the visual word form area in the blind, Neuron 76, 640–652. DOI:10.1016/j.neuron.2012.08.026.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions, J. Exp. Psychol. 18, 643–662.
Terhune, D. B., Luke, D. P., Kaelen, M., Bolstridge, M., Feilding, A., Nutt, D., Carhart-Harris, R. and Ward, J. (2016). A placebo-controlled investigation of synaesthesia-like experiences under LSD, Neuropsychologia 88, 28–34. DOI:10.1016/j.neuropsychologia.2016.04.005.
Terhune, D. B., Luke, D. P. and Kadosh, R. C. (2017). The induction of synaesthesia in non-synaesthetes, in: Sensory Blending: on Synaesthesia and Related Phenomena, O. Deroy (Ed.), pp. 215–247. Oxford University Press, Oxford, UK.
Trivedi, B. (2010). Sensory hijack: rewiring brains to see with sound, New Sci. Health 2773, 42–45. Available at https://www.newscientist.com/article/mg20727731-500-sensory-hijack-rewiring-brains-to-see-with-sound/.
Ward, J. (2004). Emotionally mediated synaesthesia, Cogn. Neuropsychol. 21, 761–772. DOI:10.1080/02643290342000393.
Ward, J. (2013). Synesthesia, Annu. Rev. Psychol. 64, 49–75. DOI:10.1146/annurev-psych-113011-143840.
Ward, J. and Mattingley, J. B. (2006). Synaesthesia: an overview of contemporary findings and controversies, Cortex 42, 129–136. DOI:10.1016/S0010-9452(08)70336-8.
Ward, J. and Meijer, P. (2010). Visual experiences in the blind induced by an auditory sensory substitution device, Consc. Cogn. 19, 492–500. DOI:10.1016/j.concog.2009.10.006.
Ward, J. and Wright, T. (2014). Sensory substitution as an artificially acquired synaesthesia, Neurosci. Biobehav. Rev. 41, 26–35. DOI:10.1016/j.neubiorev.2012.07.007.
Ward, J., Huckstep, B. and Tsakanikos, E. (2006). Sound–colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all?, Cortex 42, 264–280. DOI:10.1016/S0010-9452(08)70352-6.
White, B. W., Saunders, F. A., Scadden, L., Bach-Y-Rita, P. and Collins, C. C. (1970). Seeing with the skin, Percept. Psychophys. 7, 23–27. DOI:10.3758/BF03210126.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 911 | 259 | 22 |
Full Text Views | 73 | 20 | 0 |
PDF Views & Downloads | 126 | 32 | 0 |
Sensory Substitution Devices (SSDs) are typically used to restore functionality of a sensory modality that has been lost, like vision for the blind, by recruiting another sensory modality such as touch or audition. Sensory substitution has given rise to many debates in psychology, neuroscience and philosophy regarding the nature of experience when using SSDs. Questions first arose as to whether the experience of sensory substitution is represented by the substituted information, the substituting information, or a multisensory combination of the two. More recently, parallels have been drawn between sensory substitution and synaesthesia, a rare condition in which individuals involuntarily experience a percept in one sensory or cognitive pathway when another one is stimulated. Here, we explore the efficacy of understanding sensory substitution as a form of ‘artificial synaesthesia’. We identify several problems with previous suggestions for a link between these two phenomena. Furthermore, we find that sensory substitution does not fulfil the essential criteria that characterise synaesthesia. We conclude that sensory substitution and synaesthesia are independent of each other and thus, the ‘artificial synaesthesia’ view of sensory substitution should be rejected.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 911 | 259 | 22 |
Full Text Views | 73 | 20 | 0 |
PDF Views & Downloads | 126 | 32 | 0 |