Interaction between odor and taste information creates flavor perception. There are many possible determinants of the interaction between odor and taste, one of which may be the somatic sensations associated with breathing. We assumed that a smell stimulus accompanied by inhaling or exhaling enhances taste intensity if the order is congruent with natural drinking. To present an olfactory stimulus from the identical location during inhalation and exhalation, we blocked the gap between the tube presenting the olfactory stimulus and the nostril. Participants breathed and ingested the solution according to the instructions on the screen and evaluated the solution’s taste intensity. Vanilla odor enhanced the sweet taste in both retronasal and orthonasal conditions when the order of stimuli was congruent with natural drinking, but it did not do so in either condition when they were incongruent. The results suggest that breathing is a determinant of odor–taste interaction. The methods of presenting olfactory stimuli used in this study were compared and discussed in relation to those used in previous studies. Odor-induced taste enhancement depends on the time order of smell with breathing and taste congruency in natural drinking. Taste enhancement was induced by odor in both conditions by minimizing differences in odor presentation between them.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amano, S., Narumi, T., Kobayakawa, T., Kobayashi, M., Tamura, M. and Wada, Y. (2022). A new technique to synchronize breathing with aroma presentation via the nostril, Transact. Virtual Real. Soc. Jpn 27, 109–119. DOI:10.18974/tvrsj.27.1_109.
Auvray, M. and Spence, C. (2008). The multisensory perception of flavor, Consc. Cogn. 17, 1016–1031. DOI:10.1016/j.concog.2007.06.005.
Beaton, A. A., Jones, L., Benton, D. and Richards, G. (2022). Judgements of attractiveness of the opposite sex and nostril differences in self-rated mood: the effects of androstenol, Biol. Psychol. 167, 108237. DOI:10.1016/j.biopsycho.2021.108237.
Blankenship, M. L., Grigorova, M., Katz, D. B. and Maier, J. X. (2019). Retronasal odor perception requires taste cortex, but orthonasal does not, Curr. Biol. 29, 62–69.e3. DOI:10.1016/j.cub.2018.11.011.
Cain, W. S. (1977). Differential sensitivity for smell: “noise” at the nose, Science 195, 796–798. DOI:10.1126/science.83659.
Craft, M. F., Barreiro, A. K., Gautam, S. H., Shew, W. L. and Ly, C. (2021). Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models, PLoS Comput. Biol. 17, e1009169. DOI:10.1371/journal.pcbi.1009169.
Djordjevic, J., Zatorre, R. J. and Jones-Gotman, M. (2004). Odor-induced changes in taste perception, Exp. Brain Res. 159, 405–408. DOI:10.1007/s00221-004-2103-y.
Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion, Nature 415, 429–433. DOI:10.1038/415429a.
Gotow, N. and Kobayakawa, T. (2021). Context effect on temporal resolution of olfactory–gustatory, visual–gustatory, and olfactory–visual synchrony perception, Chemosens. Percept. 14, 27–40. DOI:10.1007/s12078-020-09282-z.
Gotow, N., Kobayashi, T. and Kobayakawa, T. (2013). Retronasal aroma allows feature extraction from taste of a traditional Japanese confection, Flavour 2, 26. DOI:10.1186/2044-7248-2-26.
Green, B. G., Nachtigal, D., Hammond, S. and Lim, J. (2012). Enhancement of retronasal odors by taste, Chem. Senses 37, 77–86. DOI:10.1093/chemse/bjr068.
Homewood, J. and Stevenson, R. J. (2001). Differences in naming accuracy of odors presented to the left and right nostrils, Biol. Psychol. 58, 65–73. DOI:10.1016/S0301-0511(01)00097-7.
Kakutani, Y., Narumi, T., Kobayakawa, T., Kawai, T., Kusakabe, Y., Kunieda, S. and Wada, Y. (2017). Taste of breath: the temporal order of taste and smell synchronized with breathing as a determinant for taste and olfactory integration, Sci. Rep. 7, 8922. DOI:10.1038/s41598-017-07285-7.
Kakutani, Y., Narumi, T., Kobayakawa, T., Kawai, T., Kusakabe, Y., Kuneida, S. and Wada, Y. (2019). Saltiness intensity enhancements by odor of soy sauce synchronized with breathing, Transact. Virtual Real. Soc. Jpn 24, 77–82.
Kobal, G. and Hummel, C. (1988). Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa, Electroencephalogr. Clin. Neurophysiol. 71, 241–250. DOI:10.1016/0168-5597(88)90023-8.
Kobal, G., Klimek, L., Wolfensberger, M., Gudziol, H., Temmel, A., Owen, C. M., Seeber, H., Pauli, E. and Hummel, T. (2000). Multicenter investigation of 1036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds, Eur. Arch. Otorhinolaryngol. 257, 205–211. DOI:10.1007/s004050050223.
Kobal, G., Van Toller, S. and Hummel, T. (1989). Is there directional smelling?, Experientia 45, 130–132. DOI:10.1007/BF01954845.
Kobayakawa, T. and Gotow, N. (2016). Specificities of chemical senses among sensory modalities: synchrony perception for olfactory–visual, visual–gustatory, olfactory–gustatory and match–mismatch combinations, Chem. Senses 41, e170–e171.
Lewald, J. and Guski, R. (2003). Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli, Brain Res. Cogn. Brain Res. 16, 468–478. DOI:10.1016/S0926-6410(03)00074-0.
Lim, J. and Johnson, M. B. (2011). Potential mechanisms of retronasal odor referral to the mouth, Chem. Senses 36, 283–289. DOI:10.1093/chemse/bjq125.
Maier, J. X. and Elliott, V. E. (2020). Adaptive weighting of taste and odor cues during flavor choice, J. Neurophysiol. 124, 1942–1947. DOI:10.1152/jn.00506.2020.
Ni, R., Michalski, M. H., Brown, E., Doan, N., Zinter, J., Ouellette, N. T. and Shepherd, G. M. (2015). Optimal directional volatile transport in retronasal olfaction, Proc. Natl Acad. Sci. U.S.A. 112, 14700–14704. DOI:10.1073/pnas.1511495112.
Pfeiffer, J. C., Hollowood, T. A., Hort, J. and Taylor, A. J. (2005). Temporal synchrony and integration of sub-threshold taste and smell signals, Chem. Senses 30, 539–545. DOI:10.1093/chemse/bji047.
Rozin, P. (1982). “Taste-smell confusions” and the duality of the olfactory sense, Percept. Psychophys. 31, 397–401. DOI:10.3758/BF03202667.
Sakai, N., Kobayakawa, T., Gotow, N., Saito, S. and Imada, S. (2001). Enhancement of sweetness ratings of aspartame by a vanilla odor presented either by orthonasal or retronasal routes, Percept. Mot. Skills 92, 1002–1008. DOI:10.2466/pms.2001.92.3c.1002.
Sanganahalli, B. G., Baker, K. L., Thompson, G. J., Herman, P., Shepherd, G. M., Verhagen, J. V. and Hyder, F. (2020). Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI, NeuroImage 212, 116664. DOI:10.1016/j.neuroimage.2020.116664.
Small, D. M., Gerber, J. C., Mak, Y. E. and Hummel, T. (2005). Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans, Neuron 47, 593–605. DOI:10.1016/j.neuron.2005.07.022.
Spence, C. (2015). Multisensory flavor perception, Cell 161, 24–35. DOI:10.1016/j.cell.2015.03.007.
Thuerauf, N., Gossler, A., Lunkenheimer, J., Lunkenheimer, B., Maihöfner, C., Bleich, S., Kornhuber, J., Markovic, K. and Reulbach, U. (2008). Olfactory lateralization: odor intensity but not the hedonic estimation is lateralized, Neurosci. Lett. 438, 228–232.
Toda, H. and Kobayakawa, T. (2008). High-speed gas concentration measurement using ultrasound, Sens. Actuators A Phys. 144, 1–6.
Wada, Y., Kitagawa, N. and Noguchi, K. (2003). Audio–visual integration in temporal perception, Int. J. Psychophysiol. 50, 117–124. DOI:10.1016/s0167-8760(03)00128-4.
Wada, Y., Narumi, T., Kakutani, Y., Mori, K., Kobayakawa, T., Kunieda, S., Kawai, T. and Kusakabe, Y. (2016). Perceived intensities of odor delivered via orthonasal or retronasal routes synchronized with breath, Virtual Real. Soc. Jpn Res. Rep. 21, 47–50.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1572 | 438 | 50 |
Full Text Views | 123 | 27 | 2 |
PDF Views & Downloads | 214 | 42 | 3 |
Interaction between odor and taste information creates flavor perception. There are many possible determinants of the interaction between odor and taste, one of which may be the somatic sensations associated with breathing. We assumed that a smell stimulus accompanied by inhaling or exhaling enhances taste intensity if the order is congruent with natural drinking. To present an olfactory stimulus from the identical location during inhalation and exhalation, we blocked the gap between the tube presenting the olfactory stimulus and the nostril. Participants breathed and ingested the solution according to the instructions on the screen and evaluated the solution’s taste intensity. Vanilla odor enhanced the sweet taste in both retronasal and orthonasal conditions when the order of stimuli was congruent with natural drinking, but it did not do so in either condition when they were incongruent. The results suggest that breathing is a determinant of odor–taste interaction. The methods of presenting olfactory stimuli used in this study were compared and discussed in relation to those used in previous studies. Odor-induced taste enhancement depends on the time order of smell with breathing and taste congruency in natural drinking. Taste enhancement was induced by odor in both conditions by minimizing differences in odor presentation between them.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1572 | 438 | 50 |
Full Text Views | 123 | 27 | 2 |
PDF Views & Downloads | 214 | 42 | 3 |