The study of the metabolic variations in plant roots up to 96 h after their inoculation with second-stage juveniles (J2) of Meloidogyne incognita revealed that soybean cultivars resistant to this nematode produced more soluble phenols and alkaloids. In tomato plants the resistance to M. incognita correlates with the production of soluble phenols, the concentrations of which were always higher in the resistant cultivar. For common bean plants the production of soluble carbohydrates, especially sucrose, increased after their inoculation. However, the extracts of roots from plants resistant to M. incognita did not increase the in vitro mortality of J2.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adams B.J., Dillman A.R., Finlinson C. (2009). Molecular taxonomy and phylogeny. In: Perry R.N., Moens M., Starr J.L. (Eds). Root-knot nematodes . Wallingford, UK, CABI International, pp. 119-138.
Allen E.H., Feldmesser J. (1971). Nematicidal activity of α-chaconine: effect of hydrogen-ion concentration. Journal of Nematology 3, 58-61.
Amaral D.R., Oliveira F.E.R., Oliveira D.F., Campos V.P. (2003). Purification of two substances from bulbs of onion with nematicidal activity against Meloidogyne exigua Goeldi. Nematology 5, 859-864.
(1996). Official methods of analysis . Washington, DC, USA, Association of Official Analytical Chemists, 1018 pp.
Bajaj K.L., Arora Y.K., Mahajan R. (1983). Biochemical differences in tomato cultivars resistant and susceptible to Meloidogyne incognita. Revue de Nématologie 6, 143-145.
Barbosa L.C.A., Barcelos F.F., Demuner A.J., Santos M.A. (1999). Chemical constituents from Mucuna aterrima with activity against Meloidogyne incognita and Heterodera glycines. Nematropica 29, 81-88.
Bellostas N., Sørensen A.D., Sørensen J.C., Sørensen H. (2007). Genetic variation and metabolism of glucosinolates. Advances in Botanical Research 45, 369-415.
Bhattarai K.K., Xie Q.G., Mantelin S., Bishnoi U., Girke T., Navarre D.A., Kaloshian I. (2008). Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Molecular Plant-Microbe Interactions 21, 1205-1214.
Boneti J.I.S., Ferraz S. (1981). Modificações do método de Hussey & Barker para extração de ovos de Meloidogyne exigua em raízes de cafeeiro. Fitopatologia Brasileira 6, 533.
Chitwood D.J. (2002). Phytochemical-based strategies for nematode control. Annual Review of Phytopathology 40, 221-249.
Dropkin V.H. (1969). Cellular responses of plants to nematode infections. Annual Review of Phytopathology 7, 101-122.
Du S.S., Zhang H.M., Bai C.Q., Wang C.F., Liu Q.Z., Liu Z.L., Wang Y.Y., Deng Z.W. (2011). Nematocidal flavone-C-glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. Molecules 16, 5079-5086.
Dunn R.A. (1969). Extraction of cysts of Heterodera species from soils by centrifugation of high-density solutions. Journal of Nematology 1, 7-17.
Dyakov Y.T., Ozeretskovskaya O.L. (2007). Vertical pathosystem: resistance genes and their products. Signal transduction. In: Dyakov Y.T., Dzhavakhiya V.G., Korpela T. (Eds). Comprehensive and molecular phytopathology . Amsterdam, The Netherlands, Elsevier Science, pp. 217-245.
Gols R., Raaijmakers C.E., Van Dam N.M., Dicke M., Bukovinszky T., Harvey J.A. (2007). Seasonal effects of plant chemistry in crucifers influence tritrophic interactions. Basic and Applied Ecology 8, 421-433.
Gupta R.L., Prasad D., Thukral R. (2005). Quantitative structure activity relationship study for the fungicidal and nematicidal activity of phenols. Pesticide Research Journal 17, 15-20.
Hung C., Rohde R.A. (1973). Phenol accumulation related to resistance in tomato to infection by root-knot and lesion nematodes. Journal of Nematology 5, 253-258.
Hunt D.J., Handoo Z.A. (2009). Taxonomy, identification and principal species. In: Perry R.N., Moens M., Starr J.L. (Eds). Root-knot nematodes . Wallingford, UK, CABI International, pp. 55-97.
Hussey R.S., Barker K.R. (1973). A comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 1025-1028.
Ikeda Y., Koizumi N., Kusano T., Sano H. (1999). Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiology 121, 813-820.
Jahangir M., Kim H.K., Choi Y.H., Verpoorte R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry 107, 362-368.
Johnson R., Ryan C.A. (1999). Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose. Plant Molecular Biology 14, 527-536.
Lewis S.A., McClure M.A. (1975). Free amino acids in roots of infected cotton seedlings resistant and susceptible to Meloidogyne incognita. Journal of Nematology 7, 10-15.
Lohar D.P., Schaff J.E., Lashey J.G., Kieber J.J., Bilyeu K.D., Bird D.M. (2004). Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant Journal 38, 203-214.
McClure M.A., von Mende N. (1987). Induced salivation in plant-parasitic nematodes. Phytopathology 77, 1463-1469.
Moens M., Perry R.N., Starr J.L. (2009). Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry R.N., Moens M., Starr J.L. (Eds). Root-knot nematodes . Wallingford, UK, CABI International, pp. 1-17.
Nyczepir A.P., Thomas S.H. (2009). Current and future management strategies in intensive crop production systems. In: Perry R.N., Moens M., Starr J.L. (Eds). Root-knot nematodes . Wallingford, UK, CABI International, pp. 412-443.
Oliveira D.F., Carvalho H.W.P., Nunes A.S., Silva G.H., Cavalheiro A.J., Campos V.P. (2007). Atividade de carboidrato purificado a partir da cebola (Allium cepa L.) e de carboidratos comerciais sobre juvenis de Meloidogyne exigua Goeldi. Nematologia Brasileira 31, 202-209.
Oliveira D.F., Carvalho H.W.P., Nunes A.S., Silva G.H., Campos V.P., Júnior H.M.S., Cavalheiro A.J. (2009). The activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. European Journal of Plant Pathology 124, 57-63.
Passos L.P. (1996). Métodos analíticos e laboratoriais em fisiologia vegetal . Coronel Pacheco, Brazil, Embrapa-CNPGL, 223 pp.
Rocha F.S., Muniz M.F.S., Campos V.P. (2005). Ação de exsudatos radiculares de plantas na eclosão, motilidade, mortalidade e penetração de juvenis de Meloidogyne incognita. Summa Phytopathologica 31, 187-193.
Santiago D.C., Homechin M., Montalvan R., Krzyzanowsk A.A. (2005). Potential of sucrose and Pennisetum purpureum cv. Cameroon Mulch on the management of Meloidogyne javanica and M. incognita. Brazilian Archives of Biology and Technology 48, 873-883.
Sasser J.N., Freckman D.W. (1987). A world perspective on nematology: the role of the society. In: Veech J.A., Dickson D.W. (Eds). Vistas on nematology . Hyattsville, Maryland, USA, Society of Nematologists, pp. 7-14.
Schneider S.M. (1991). Penetration of susceptible and resistant tobacco cultivars by Meloidogyne juveniles. Journal of Nematology 23, 225-228.
Shukla Y.M., Chakraborty M.K. (1988). Biochemical studies on response of tobacco and tomato plants to root knot nematode infection. Tobacco Research 14, 43-50.
Silva G.L., Lee I., Kinghorn A.D. (1998). Special problems with the extraction of plants. Methods in Biotechnology 4, 343-363.
Sreevidya N., Mehrotra S. (2003). Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. Journal of AOAC International 86, 1124-1127.
Thoden T.C., Boppré M. (2010). Plants producing pyrrolizidine alkaloids: sustainable tools for nematode management? Nematology 12, 1-24.
Udalova Z.V., Zinov’eva S.V., Vasil’eva I.S., Paseshnichenko V.A. (2004). Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Applied Biochemistry and Microbiology 40, 93-97.
Wuyts N., Lognay G., Verscheure M., Marlier M., De Waele D., Swennen R. (2007). Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathology 56, 878-890.
Zhao T.J., Liu Y., Yan Y.B., Feng F., Liu W.Q., Zhou H.M. (2007). Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Letters 581, 3044-3050.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 416 | 79 | 14 |
Full Text Views | 121 | 2 | 0 |
PDF Views & Downloads | 26 | 3 | 0 |
The study of the metabolic variations in plant roots up to 96 h after their inoculation with second-stage juveniles (J2) of Meloidogyne incognita revealed that soybean cultivars resistant to this nematode produced more soluble phenols and alkaloids. In tomato plants the resistance to M. incognita correlates with the production of soluble phenols, the concentrations of which were always higher in the resistant cultivar. For common bean plants the production of soluble carbohydrates, especially sucrose, increased after their inoculation. However, the extracts of roots from plants resistant to M. incognita did not increase the in vitro mortality of J2.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 416 | 79 | 14 |
Full Text Views | 121 | 2 | 0 |
PDF Views & Downloads | 26 | 3 | 0 |