Three isolates (Dero-1, Dero-8 and Mosisa-1) of a new entomopathogenic nematode, S. ethiopiense sp. n., were isolated by baiting soil samples from the Mendi area, Western Wollega, Ethiopia, with last instar wax moth larvae Galleria mellonella. Infective juveniles of S. ethiopiense sp. n. have a body length of 898 (768-1010) μm, a maximum of eight identical ridges (i.e., nine lines) in the lateral field, excretory pore located at mid-pharynx, hyaline layer occupying approximately half of the tail and c′ = 3.2. First generation males lack a caudal mucron, whereas second generation males possess a short spine-like mucron. The spicules are slightly arcuate, golden-brown in colour and have an ellipsoid or oblong manubrium. First generation females lack a postanal swelling and have a minute protuberance on the tail tip whereas second generation females have a postanal swelling and protruding vulva. Based on the morphology, morphometrics and DNA analysis, the new species belongs to the glaseri group. The closest relative species is the afro-tropical S. karii recorded from Kenya. The BLAST analysis of the ITS region of the rDNA revealed a similarity of 93% with S. karii, supporting the validity of S. ethiopiense sp. n. as a new species. In the phylogenetic trees the new species groups together only with S. karii (bootstrap value of 100%), but is also separated from S. karii by a bootstrap value of 100% or 70%.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Bedding R.A. , Akhurst R.J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21, 109-110.
Courtney W.D. , Polley D. , Miller V.I. (1955). TAF, an improved fixative in nematode technique. Plant Disease Reporter 39, 570-571.
De Ley P. , Félix M.A. , Frisse L.M. , Nadler S.A. , Sternberg P.W. , Thomas W.K. (1999). Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 2, 591-612.
Ehlers R.-U. (2001). Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology & Biotechnology 56, 623-633.
Ehlers R.-U. (2003) Biocontrol nematodes. In: Hokkanen H.M.T. , Hajek A. (Eds). Environmental impacts of microbial insecticides. Need and methods for risk assessment. Dordrecht, The Netherlands, Kluwer Scientific Publishers, pp. 177-220.
Ehlers R.-U. , Wyss U. , Stackebrandt E. (1988). 16S RNA cataloguing and the phylogenetic position of the genus Xenorhabdus. Systematic and Applied Microbiology 10, 121-125.
Grewal P.S. , Ehlers R.-U. , Shapiro-Ilan D.I. (2005). Nematodes as biocontrol agents. Wallingford, UK, CABI Publishing, 505 pp.
Joyce S.A. , Reid A.P. , Driver F. , Curran J. (1994). Application of polymerase chain reaction (PCR) methods to the identification of entomopathogenic nematodes. In: Burnell A.M. , Ehlers R.-U. , Masson J.P. (Eds). COST 812 Biotechnology: Genetics of entomopathogenic nematode-bacterium complexes. Proceedings of a symposium & workshop, St Patrick’s College, Maynooth, Co, Kildare, Ireland. Luxembourg, DGXII, European Commission, pp. 178-187.
Malan A.P. , Nguyen K.B. , Addison M.F. (2006). Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protection 12, 65-69.
Mekete T. , Gaugler R. , Nguyen K.B. , Mandefro W. , Tessera M. (2005). Biogeography of entomopathogenic nematodes in Ethiopia. Nematropica 35, 31-36.
Nguyen K.B. (2007). Methodology, morphology and identification. In: Nguyen K.B. , Hunt D.J. , Hunt D.J. , Perry R.N. ). Leiden, The Netherlands, Brill Academic Publishers, pp. 59-119.
Nguyen K.B. , Smart G.C. Jr (1995). Scanning electron microscope studies of Steinernema glaseri (Nematoda: Steinernematidae). Nematologica 41, 183-190.
Nguyen K.B. , Tesfamariam M. , Gozel U. , Gaugler R. , Adams B.J. (2005). Steinernema yirgalemense n. sp. (Rhabditida: Steinernematidae) from Ethiopia. Nematology 6 (2004), 839-856.
Nguyen K.B. , Malan A.P. , Gozel U. (2006). Steinernema khoisanae n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 8, 157-175.
Nguyen K.B. , Hunt D.J. , Mráček Z. (2007). Steinernematidae: species descriptions. In: Nguyen K.B. , Hunt D.J. , Hunt D.J. , Perry R.N. ). Leiden, The Netherlands, Brill Academic Publishers, pp. 121-609.
Nguyen K.B. , Ginarte C.M.A. , Leite L.G. , dos Santos J.M. , Harakava R. (2010). Steinernema brazilense n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Mato Grosso, Brazil. Journal of Invertebrate Pathology 103, 8-20.
Seinhorst J.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 67-69.
Shamseldean M.M. , Abou El-Sooud A.B. , Saleh M.M.E. (1996). Isolation of Steinernema carpocapsae (Weiser, 1955) Poinar, 1990 (Steinernematidae), Heterorhabditis bacteriophora Poinar, 1976 and Heterorhabditis indicus Poinar et al., 1992 (Heterorhabditidae) as first record from Egypt. Egyptian Journal of Biological Pest Control 6, 187-201.
Spiridonov S.E. , Reid A.P. , Podrucka K. , Subbotin S.A. , Moens M. (2004). Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS-5.8S-ITS2 region of rDNA and morphological features. Nematology 6, 547-566.
Swofford D.L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA, USA, Sinauer Associates, 142 pp.
Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. (1997). The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.
Waturu C.N. , Hunt D.J. , Reid A.P. (1997). Steinernema karii sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Kenya. International Journal of Nematology 7, 68-75.
White G.F. (1927). A method for obtaining infective juvenile nematode larvae from cultures. Science 66, 302-303.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 592 | 153 | 26 |
Full Text Views | 191 | 2 | 0 |
PDF Views & Downloads | 19 | 2 | 0 |
Three isolates (Dero-1, Dero-8 and Mosisa-1) of a new entomopathogenic nematode, S. ethiopiense sp. n., were isolated by baiting soil samples from the Mendi area, Western Wollega, Ethiopia, with last instar wax moth larvae Galleria mellonella. Infective juveniles of S. ethiopiense sp. n. have a body length of 898 (768-1010) μm, a maximum of eight identical ridges (i.e., nine lines) in the lateral field, excretory pore located at mid-pharynx, hyaline layer occupying approximately half of the tail and c′ = 3.2. First generation males lack a caudal mucron, whereas second generation males possess a short spine-like mucron. The spicules are slightly arcuate, golden-brown in colour and have an ellipsoid or oblong manubrium. First generation females lack a postanal swelling and have a minute protuberance on the tail tip whereas second generation females have a postanal swelling and protruding vulva. Based on the morphology, morphometrics and DNA analysis, the new species belongs to the glaseri group. The closest relative species is the afro-tropical S. karii recorded from Kenya. The BLAST analysis of the ITS region of the rDNA revealed a similarity of 93% with S. karii, supporting the validity of S. ethiopiense sp. n. as a new species. In the phylogenetic trees the new species groups together only with S. karii (bootstrap value of 100%), but is also separated from S. karii by a bootstrap value of 100% or 70%.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 592 | 153 | 26 |
Full Text Views | 191 | 2 | 0 |
PDF Views & Downloads | 19 | 2 | 0 |