Isolation, bioassay and characterisation of Xenorhabdus sp. SY5, a highly virulent symbiotic bacterium of an entomopathogenic nematode isolated from China

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The entomopathogenic nematodes (EPN), together with their symbiotic bacteria, are obligate and lethal parasites of insects and are applied as biological approaches to pest management. In this paper, we isolated 122 strains of symbiotic bacteria from 23 EPN isolates that were gathered in various soils containing different vegetations from different regions of China. All these isolated bacterial strains showed oral insecticidal activity and/or growth inhibition to the larvae of Ostrinia furnacalis. Among these strains, Xenorhabdus sp. SY5 exhibited high insecticidal activity to O. furnacalis, Plutella xylostella, Mythimna separata, Laphygma exigua and Tenebrio molitor, all of which are important agricultural pests. Xenorhabdus sp. SY5 was isolated from EPN Steinernema sp. SY5. Through DEAE-52 column chromatography, seven toxins were purified from X. sp. SY5. Bioassay results showed that all seven toxins had, to a certain extent, insecticidal activity and/or growth inhibition to O. furnacalis, T. molitor, P. xylostella, M. separata and L. exigua. Our data also showed that each of these toxins had different insecticidal activity and/or growth inhibition against different insect species. The partial toxin gene sequence of X. sp. SY5 was determined, and its deduced amino acid sequence only showed 75, 66 and 65% identities to homologues of EPN symbiotic bacteria Photorhabdus luminescens, Xenorhabdus nematophila and Yersinia mollaretii, respectively. These results suggested that strain SY5 is a highly virulent EPN symbiotic bacterial strain that has a potential value for biological pest control.

Nematology

International Journal of Fundamental and Applied Nematological Research

Sections

References

BeddingR.A.AkhurstR.J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21, 109-110.

BlackburnM.B.DomekJ.M.GelmanD.B.HuJ.S. (2005). The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci. Journal of Insect Science 5, 32.

BoemareN.E.Boyer-GiglioM.H.ThalerJ.O.AkhurstR.J.BrehelinM. (1992). Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Applied and Environmental Microbiology 58, 3032-3037.

BowenD.J.EnsignJ.C. (2001). Isolation and characterization of intracellular protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology 67, 4834-4841.

BowenD.RocheleauT.A.BlackburnM.AndreevO.GolubevaE.BhartiaR.ffrench-ConstantR.H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 5372, 2129-2132.

BowenD.BlackburnM.RocheleauT.GrutzmacherC.ffrench-ConstantR.H. (2000). Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes. Insect Biochemistry and Molecular Biology 30, 69-74.

BrownS.E.CaoA.T.HinesE.R.AkhurstR.J.EastP.D. (2004). A novel secreted protein toxin from the insect pathogenic bacterium Xenorhabdus nematophila. Journal of Biological Chemistry 279, 14595-14601.

BussamanP.SermswanR.W.GrewalP.S. (2006). Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari: Pygmephoridae). Biocontrol Science and Technology 16, 245-256.

CaldasC.CherquiA.PereiraA.SimõesN. (2002). Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Applied and Environmental Microbiology 68, 1297-1304.

ChapuisÉ.PagèsS.EmelianoffV.GivaudanA.FerdyJ.-B. (2011). Virulence and pathogen multiplication: a serial passage experiment in the hypervirulent bacterial insect-pathogen Xenorhabdus nematophila. PloS ONE 6, e15872. DOI:10.1371/journal.pone.0015872

CicheA.T.DarbyC.EhlersR.-U.ForstS.Goodrich-BlairH. (2006). Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biological Control 38, 22-46.

DuchaudE.RusniokC.FrangeulL.BuchrieserC.GivaudanA.TaouritS.BocsS.Boursaux-EudeC.ChandlerM.CharlesJ.F. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology 21, 1307-1313.

ffrench-ConstantR.H.BowenD.J. (2000). Novel insecticidal toxins from nematode-symbiotic bacteria. Cellular and Molecular Life Sciences 57, 828-833.

ffrench-ConstantR.H.WaterfieldN.BurlandV.PernaN.T.DabornP.J.BowenD.BlattnerF.R. (2000). A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Applied and Environmental Microbiology 66, 3310-3329.

GaudriaultS.DuchaudE.LanoisA.CanoyA.S.BourotS.DeroseR.KunstF.BoemareN.GivaudanA. (2006). Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. Journal of Bacteriology 188, 809-814.

GoetschM.OwenH.GoldmanB.ForstS. (2006). Analysis of the PixA inclusion body protein of Xenorhabdus nematophila. Journal of Bacteriology 188, 2706-2710.

HanR.C.CaoL.HeX.Y.LiQ.J.LiuX.L.HuangH.PangY.HeM. (2008). Recovery response of Heterorhabditis bacteriophora and Steinernema carpocapsae to different non-symbiotic microorganisms. Insect Science 7, 271-277.

HuK.WebsterJ.M. (2000). Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-Heterorhabditis infected Galleria mellonella larvae. FEMS Microbiology Letters 189, 219-223.

JagdaleG.B.GrewalP.S.SalminenS.O. (2005). Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. Journal of Parasitology 91, 988-994.

JungS.C.KimY.G. (2007). Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 100, 246-250.

KayaH.K.GauglerR. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181-206.

KayaH.K.StockS.P. (1997). Techniques in insect nematology. In: LaceyL.A. (Ed.). Manual of techniques in insect pathology. San Diego, CA, USA, Academic Press, pp.  281-322.

LeeM.StockS.P. (2010). A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (γ-Proteobacteria: Enterobacteriaceae). Systematic Parasitology 77, 1-12.

LiM.WuG.LiuC.ChenY.QiuL.PangY. (2009). Expression and activity of a probable toxin from Photorhabdus luminescens. Molecular Biology Reports 36, 785-790.

LiuD.BurtonS.GlancyT.LiZ.S.HamptonR.MeadeT.MerloD.J. (2003). Insect resistance conferred by 283kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nature Biotechnology 21, 1222-1228.

LiuJ.BerryR.E.BlouinM.S. (2001). Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. Journal of Invertebrate Pathology 77, 87-91.

LuanJ.B.CongB.WangH.LiW.ZhangW.W.WanH.Y. (2004). Distribution of entomopathogenic nematodes in Liaoning province of China. Chinese Journal of Biological Control 20, 97-100.

MaharA.N.MunirM.ElawadS.GowenS.R.HagueN.G. (2004). Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. Journal of Zhejiang University Science 10, 1183-1190.

MaharA.N.MunirM.ElawadS.GowenS.R.HagueN.G. (2005). Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae. Journal of Zhejiang University Science 6, 457-463.

MorganJ.A.SergeantM.EllisD.OusleyM.JarrettP. (2001). Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology 67, 2062-2069.

MünchA.StinglL.JungK.HeermannR. (2008). Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9, 229.

QiuL.YanX.ZhouY.NguyenK.B.PangY. (2005). Steinernema aciari sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Guangdong, China. Journal of Invertebrate Pathology 88, 58-69.

QiuX.HanR.YanX.LiuM.CaoL.YoshigaT.KondoE. (2009). Identification and characterization of a novel gene involved in the trans-Specific nematicidal activity of Photorhabdus luminescens LN2. Applied and Environmental Microbiology 75, 4221-4223.

RichardsG.R.HerbertE.E.ParkY.Goodrich-BlairH. (2008). Xenorhabdus nematophila lrhA is necessary for motility, lipase activity, toxin expression, and virulence in Manduca sexta insects. Journal of Bacteriology 190, 4870-4879.

SergeantM.JarrettP.OusleyM.MorganJ.A. (2003). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology 69, 3344-3349.

SergeantM.BaxterL.JarrettP.ShawE.OusleyM.WinstanleyC.MorganJ.A. (2006). Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin Loci. Applied and Environmental Microbiology 72, 5895-5907.

Shapiro-IlanD.RojasM.G.Morales-RamosJ.A.LewisE.E.TeddersW.L. (2008). Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: lipid- and protein-based supplements in Tenebrio molitor diets. Journal of Nematology 40, 13-19.

StorerN.P.PeckS.L.GouldF.Van DuynJ.W.KennedyG.G. (2003). Spatial processes in the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. Journal of Economic Entomology 96, 156-172.

ThompsonJ.D.GibsonT.J.PlewniakF.JeanmouginF.HigginsD.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.

VolgyiA.FodorA.ForstS. (2000). Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behavior of Xenorhabdus nematophilus. Applied and Environmental Microbiology 66, 1622-1628.

WangQ.GarrityG.M.TiedjeJ.M.ColeJ.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261-5267.

WaterfieldN.DowlingA.SharmaS.DabornP.J.PotterU.ffrench-ConstantR.H. (2001). Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Applied and Environmental Microbiology 67, 5017-5024.

WaterfieldN.R.DabornP.J.ffrench-ConstantR.H. (2002). Genomic islands in Photorhabdus. Trends in Microbiology 12, 541-545.

Figures

  • Variable sites of the alignment of the partial 16S rDNA gene sequences of Xenorhabdus sp. SY5 and other bacterial strains. Xsp, Xenorhabdus sp. SY5 (HQ231761); Xbs, X. bovienii SM (AB507818); Xbu, X. bovienii USNY95 (DQ205453); Xp, X. poinarii (HQ231760); Xn, X. nematophila (AY286478); Xh, X. hominickii (AB507814). Only 19 variable sites were detected from the alignments with a total of 424 bp in length. Sites where all sequences were identical are not shown. The position of the variable site is indicated vertically in the first three rows. Dots (.) indicate nucleotides identical to the top sequence, and dashes (-) indicate alignment gaps. Identity (%) with Xsp is followed.

    View in gallery
  • DEAE-52 chromatography elution pattern, showing seven insecticidal active peaks. As determined by bioassay, peaks I through VII showed insecticidal activity and/or growth inhibition to the five pest species tested. Solid line, absorbance at 280 nm.

    View in gallery
  • Partial amino acid sequence alignment of the toxic gene from Xenorhabdus sp. SY5 and other bacterial strains. Xsp, X. sp. SY5 XptA1 (HQ231762); Pl, Photorhabdus luminescens TcdA1 (CAE13257); Xn, Xenorhabdus nematophila XptA1 (CAC38401); Ym, Yersinia mollaretii ATCC 43969 (EEQ10066).

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 3
Full Text Views 2 2 2
PDF Downloads 2 2 2
EPUB Downloads 0 0 0