Intraspecific variability and genetic structure in Meloidogyne chitwoodi from the USA

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Meloidogyne chitwoodi is a quarantine pathogen and a severe problem of potato. Intraspecific variation and genetic structure are not well characterised for M. chitwoodi, but are critical to avoid misidentification and to optimise management strategies. The objective of this study was to analyse the morphological and molecular variation of four M. chitwoodi isolates, representing all races and pathotypes currently known in the USA. Despite statistically significant morphological variation among adult females, morphometrics were not able reliably to distinguish M. chitwoodi isolates. In contrast to morphology, molecular traits that are determined by nuclear ribosomal genes were stable across all isolates. Malate dehydrogenase, esterase and superoxide dismutase isozyme phenotypes were conserved in all isolates, which is an important finding for diagnostics. To gain insight into the genetic structure of M. chitwoodi, we analysed a mitochondrial DNA segment including a partial region of COII, tRNA-His and 16S rRNA genes. Genetic structure was weak and marked by high haplotype and low nucleotide diversity. We found a high level of mitochondrial heteroplasmy in M. chitwoodi. Taken together, our results indicate that there is significant intraspecific morphological and molecular variation in M. chitwoodi. Consequences for resistance breeding in potato and directions for phylogeographic studies to trace the origin of M. chitwoodi are discussed.

Nematology

International Journal of Fundamental and Applied Nematological Research

Sections

References

AdamM.A.M.PhillipsM.S.BlokV.C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology 56, 190-197.

(2009). Meloidogyne chitwoodi and Meloidogyne fallax. EPPO Bulletin 39, 5-17.

BlokV.C.PhillipsM.S.FargetteM. (1997). Comparison of sequences from the ribosomal DNA intergenic region of Meloidogyne mayaguensis and other major tropical root-knot nematodes. Journal of Nematology 29, 16-22.

BlouinM.S.YowellC.A.CourtneyC.H.DameJ.B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 1007-1014.

BrownC.R.MojtahediH.JamesS.NovyR.G.LoveS. (2006). Development and evaluation of potato breeding lines with introgressed resistance to Columbia root-knot nematode (Meloidogyne chitwoodi). American Journal of Potato Research 83, 1-8.

BrownC.R.MojtahediH.ZhangL.H.RigaE. (2009). Independent resistant reactions expressed in root and tuber of potato breeding lines with introgressed resistance to Meloidogyne chitwoodi. Phytopathology 99, 1085-1089.

CuevasO.J. (1995). Distribución, rango de hospedantes y determinación de las razas de Meloidogyne chitwoodi Golden, O’Bannon & Finley, 1980 (Nematoda: Meloidogyninae) en el Valle de Huamantla, Tlaxcala. M.S. thesis, Chapingo, Mexico, Universidad Autónoma Chapingo, 89 pp.

DevranZ.M.MutluN.ÖzarslandanA.ElekciogluI.H. (2009). Identification and genetic diversity of Meloidogyne chitwoodi in potato production areas of Turkey. Nematropica 39, 75-83.

DropkinV.H. (1988). The concept of race in phytonematology. Annual Review of Phytopathology 26, 145-161.

EsbenshadeP.R.TriantaphyllouA.C. (1985). Use of enzyme phenotype for identification of Meloidogyne species. Journal of Nematology 17, 6-20.

ExcoffierL.LischerH.E.L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564-567.

FargetteM.LollierV.PhillipsM.BlokV.FrutosR. (2005). AFLP analysis of the genetic diversity of Meloidogyne chitwoodi and M. fallax, major agricultural pests. Comptes Rendus Biologies 328, 455-462.

GamonA.LenneN. (2012). Meloidogyne chitwoodi and Meloidogyne fallax in France: initial management experiences. EPPO Bulletin 42, 122-126.

GoldenA.M.O’BannonJ.H.SantoG.S.FinleyA.M. (1980). Description and SEM observations of Meloidogyne chitwoodi n. sp. (Meloidogynidae). A root-knot nematode on potato in the Pacific Northwest. Journal of Nematology 12, 319-327.

Gutiérrez-GutiérrezC.CastilloP.Cantalapiedra-NavarreteC.LandaB.B.DeryckeS.Palomares-RiusJ.E. (2011). Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation. Phytopathology 101, 1168-1175.

HoltermanM.KarssenG.van den ElsenS.van MegenH.BakkerJ.HelderJ. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99, 227-235.

HudsonR.R. (2000). A new statistic for detecting genetic differentiation. Genetics 155, 2011-2014.

HusseyR.S.BarkerK.R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 1025-1028.

HymanB.C.WhippleL.E. (1996). Application of mitochondrial DNA polymorphism to Meloidoyne molecular population biology. Journal of Nematology 28, 268-276.

HymanB.C.LewisS.C.TangS.WuZ. (2011). Rampant gene rearrangement and haplotype hypervariation among nematode mitochondrial genomes. Genetica 139, 611-615.

InghamR.E.HammP.B.WilliamsR.E.SwansonW.H. (2000). Control of Meloidogyne chitwoodi in potato with fumigant and non-fumigant nematicides. Journal of Nematology (Suppl.) 32, 556-565.

JepsonS.B. (1985). Meloidogyne chitwoodi. CIH Descriptions of plant-parasitic nematodes, Set 8, No. 106. Farnham Royal, UK, Commonwealth Agricultural Bureaux.

KarssenG. (1996). Description of Meloidogyne fallax n. sp. (Nematoda: Heteroderidae), a root-knot nematode from The Netherlands. Fundamental and Applied Nematology 19, 593-599.

KarssenG. (2002). The plant-parasitic nematode genus Meloidogyne Göldi, 1892 (Tylenchida) in Europe. Leiden, The Netherlands, Brill, 157 pp.

LeachM.AgudeloP.Lawton-RauhA. (2012). Genetic variability of Rotylenchulus reniformis. Plant Disease 96, 30-36.

LibradoP.RozasJ. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.

LuntD.H.HymanB.C. (1997). Animal mitochondrial DNA recombination. Nature 387, 247.

MojtahediH.SantoG.S.WilsonJ.H. (1988). Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. Journal of Nematology 20, 468-473.

MojtahediH.SantoG.S.BrownC.R.FerrisH.WilliamsonV. (1994). A new host race of Meloidogyne chitwoodi from California. Plant Disease 78, 1010.

MojtahediH.BrownC.R.RigaE.ZhangL.H. (2007). A new pathotype of Meloidogyne chitwoodi race 1 from Washington State. Plant Disease 91, 1051.

O’BannonJ.H.SantoG.S.NyczepirA.P. (1982). Host range of the Columbia root-knot nematode. Plant Disease 66, 1045-1048.

OzarslandanA.DevranZ.MutluN.ElekciogluI.H. (2009). First report of Columbia root-knot nematode (Meloidogyne chitwoodi) in potato in Turkey. Plant Disease 93, 316.

PicardD.PlantardO.ScurrahM.MugniéryD. (2004). Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Molecular Ecology 13, 2899-2908.

PlantardO.PorteC. (2004). Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochronistic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology 13, 33-41.

PosadaD. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253-1256.

PowersT.O.HarrisT.S. (1993). A polymerase chain reaction method for identification of five major Meloidogyne species. Journal of Nematology 25, 1-6.

PowersT.O.MullinP.G.HarrisT.S.SuttonL.A.HigginsR.S. (2005). Incorporating molecular identification of Meloidogyne spp. into a large-scale regional nematode survey. Journal of Nematology 37, 226-235.

SantoG.S.PinkertonJ.N. (1985). A second race of Meloidogyne chitwoodi discovered in Washington State. Plant Disease 69, 361.

SchmitzB.BurgermeisterW.BraaschH. (1998). Molecular genetic classification of central European Meloidogyne chitwoodi and M. fallax populations. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 50, 310-317.

TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739.

TaylorD.P.NetscherC. (1974). An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica 20, 268-269.

van der BeekJ.G.PoleijL.M. (2008). Evidence for pathotype mixtures on Solanum bulbocastanum in Meloidogyne chitwoodi but not in M. fallax. Nematology 10, 575-584.

van der BeekJ.G.PoleijL.M.ZijlstraC.JanssenR.JanssenG.J.W. (1998). Variation in virulence within Meloidogyne chitwoodi, M. fallax and M. hapla on Solanum spp. Phytopathology 88, 658-665.

van der BeekJ.G.MaasP.W.T.H.JanssenG.J.W.ZijlstraC.van SilfhoutC.H. (1999). A pathotype system to describe intraspecific variation in pathogenicity of Meloidogyne chitwoodi. Journal of Nematology 31, 386-392.

van MeggelenJ.C.KarssenG.JanssenG.J.W.Verkerk-BakkerB.JanssenR. (1994). A new race of Meloidogyne chitwoodi Golden, O’Bannon, Santo & Finley, 1980? Fundamental and Applied Nematology 17, 93-96.

VillateL.EsmenjaudD.van HeldenM.StoeckelS.PlantardO. (2010). Genetic signature of amphimixis allows for the detection and fine scale localization of sexual reproduction events in a mainly parthenogenetic nematode. Molecular Ecology 19, 856-873.

WishartJ.PhillipsM.S.BlokV.C. (2002). Ribosomal intergenic spacer: a polymerase chain reaction diagnostic for Meloidogyne chitwoodi, M. fallax, and M. hapla. Phytopathology 92, 884-892.

WrightS. (1978). Evolution and the genetics of populations, Vol. IV. Variability within and among natural populations. Chicago, IL, University of Chicago Press.

Figures

  • Photomicrographs of perineal patterns of females from four isolates representing distinct races and pathotypes of Meloidogyne chitwoodi. WAMC1 (A-D), WAMCRoza (E-H), WAMC27 (I-L), CAMC2 (M-P). (Scale bar = 10 μm).

    View in gallery
  • Photomicrographs of perineal patterns of Meloidogyne chitwoodi showing punctations (arrows) at the tail terminus (Scale bar: A, B = 25 μm). Punctations were found in all isolates studied. Shown here are representative patterns from isolates CAMC2 (A, C) and WAMCRoza (B, D). Panels C, D show enlarged regions of A, B.

    View in gallery
  • Canonical discriminant analysis performed with five morphometric variables (Table 2) in females from four Meloidogyne chitwoodi isolates representing distinct races and pathotypes. Enlarged symbols indicate means. This figure is published in colour in the online version of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/15685411.

    View in gallery
  • Isozyme phenotypes from females of four Meloidogyne chitwoodi isolates representing distinct races and pathotypes. A: Malate dehydrogenase; B: Esterase; C: Superoxide dismutase. WAMC1 (R1), WAMCRoza (RO), WAMC27 (R2), CAMC2 (CA); M. javanica (MJ) as relative size marker.

    View in gallery
  • PCR amplification products for 194/195 primers using bulk DNA from four Meloidogyne chitwoodi isolates representing distinct races and pathotypes. WAMC1 (R1), WAMCRoza (RO), WAMC27 (R2), CAMC2 (CA), M. hapla (MH), negative control (neg). X = 1 kb DNA ladder (NEB), Y = 100 bp DNA ladder (NEB).

    View in gallery
  • Minimum-spanning haplotype network based on sequence variation in the COII-16S rRNA mtDNA region from four Meloidogyne chitwoodi isolates representing distinct races and pathotypes. Network combines haplotypes found across all isolates. Sizes of circles are proportional to haplotype frequency. WAMC1 (R1), WAMCRoza (RO), WAMC27 (R2), CAMC2 (CA). This figure is published in colour in the online version of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/15685411.

    View in gallery
  • Isolate-specific minimum-spanning haplotype networks based on sequence variation in the COII-16S rRNA mtDNA region from four Meloidogyne chitwoodi isolates representing distinct races and pathotypes. WAMC1 (R1), WAMCRoza (RO), WAMC27 (R2), CAMC2 (CA). Colours represent each of the eight individual second-stage juveniles used for the analysis. Five sequences were analysed for each individual. Sizes of circles are proportional to haplotype frequency. Haplotype numbers correspond to Figure 6. This figure is published in colour in the online version of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/15685411.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 5 5 3
Full Text Views 6 6 6
PDF Downloads 1 1 1
EPUB Downloads 0 0 0