Liquid culture of Panagrolaimus sp. for use as food for marine aquaculture shrimp and fish species

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Free-living nematodes have potential to be used as live food for early life stages of several species in marine aquaculture. Panagrolaimus sp. displays several favourable characteristics for this application. The present study proved the feasibility of propagation in monoxenic liquid culture on Saccharomyces cerevisiae. The development of yeast cell density, nematode numbers and size distribution was assessed daily for 15 days. After a lag phase of 4 days the inoculated first-stage juveniles started development to adults. Yields in terms of nematode number as well as biomass were highly variable. The maximum number of nematodes varied from 45 000 to 238 000 ml−1 and maximum biomass from 49 to 143 g l−1. Information on size, dry and wet weight of the nematodes is provided. The size spectrum of Panagrolaimus sp. individuals ranged from 176 × 8 μm to 1377 × 61 μm and 8.15 to 3202.39 ng wet weight. Water content of the nematodes was 71.7 ± 2.5%, so dry weight per individual was 2.31-905.95 ng. Differentiation of juvenile stages by body length was not possible. Based on comparison of dry weight per individual the Panagrolaimus sp. might be used as a substitute for rotifers, a commonly used live food organism.

Liquid culture of Panagrolaimus sp. for use as food for marine aquaculture shrimp and fish species

in Nematology



AndrássyI. (1956). Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoda). Acta Zoologica 21-15.

BarrièreA.FélixM. (2006). Isolation of C. elegans and related nematodes. WormBook. Available online at (accessed 4 July 2012).

BiedenbachJ.M.SmithL.L.ThomsenT.K.LawrenceA.L. (1989). Use of the nematode Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. Journal of the World Aquaculture Society 2061-71.

ByerlyL.CassadaR.RussellR.L. (1976). The life cycle of the nematode Caenorhabditis elegans: I. Wild-type growth and reproduction. Developmental Biology 5123-33.

CahuC.Zambonino InfanteJ. (2001). Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200161-180.

Chavarría-HernándezN.Espino-GarcíaJ.-J.Sanjuan-GalindoR.Rodríguez-HernándezA.-I. (2006). Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey: kinetics and modeling. Journal of Biotechnology 12575-84.

CryanW.S.HansenE.MartinM.SayreF.W.YarwoodE.A. (1963). Axenic cultivation of the dioecious nematode Panagrellus redivivus. Nematologica 9313-319.

DhertP. (1996). Rotifers. In: LavensP.SorgeloosP. (Eds). Manual on the production and use of life food for aquaculture. Rome, ItalyFAO pp.  49-78.

DhertP.RombautG.SuantikaG.SorgeloosP. (2001). Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200129-146.

Dos SantosG.A.P.DeryckeS.Fonsêca-GenevoisV.G.CoelhoL.C.B.B.CorreiaM.T.S.MoensT. (2008). Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. Journal of Experimental Marine Biology and Ecology 35527-40.

DSMZ (2007). Universal medium for yeasts. Available online at (accessed 4 July 2012).

EhlersR.-U. (2001). Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology & Biotechnology 56623-633.

EhlersR.-U.LunauS.Krasomil-OsterfeldK.OsterfeldK.H. (1998). Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. BioControl 4377-86.

FAO (2010). The state of world fisheries and aquaculture. Rome, ItalyFAO.

FerrisH.LauS.VenetteR. (1995). Population energetics of bacterial-feeding nematodes: respiration and metabolic rates based on CO2 production. Soil Biology & Biochemistry 27319-330.

FigueiredoJ.Van WoesikR.LinJ.NarcisoL. (2009). Artemia franciscana enrichment model – how to keep them small, rich and alive? Aquaculture 294212-220.

FisherC.FletcherD. (1995). WO 95/18527 Patent: Novel feeds for use in aquaculture.

FisherJ.M.DaviesK.A. (1990). On size and moulting of Aphelenchus avenae (Nematoda: Aphelenchida). International Journal for Parasitology 20175-182.

FockenU.SchlechtriemC.Von WuthenauM.Garcia-OrtegaA.Puello-CruzA.BeckerK. (2006). Panagrellus redivivus mass produced on solid media as live food for Litopenaeus vannamei larvae. Aquaculture Research 371429-1436.

GauglerR.HanR. (2002). Production technology. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCABI Publishing pp.  289-310.

GerlachS.A.SchrageM. (1969). Freilebende Nematoden als Nahrung der Sandgarnele Crangon crangon. Oecologia 2362-375.

HanR.C. (1996). The effects of inoculum size on yield of Steinernema carpocapsae and Heterorhabditis bacteriophora in liquid culture. Nematologica 42546-553.

HiraoA.EhlersR.-U.StrauchO. (2010). Life cycle and population development of the entomopathogenic nematodes Steinernema carpocapsae and Steinernema feltiae (Nematoda, Rhabditida) in monoxenic liquid culture. Nematology 12201-210.

IvlevaI. (1969). [ Mass cultivation of invertebrates biology and methods.] Academy of Sciences of the USSR, All-Union Hydrobiological Society (translated from Russion by Mercado A. (1973) Jerusalem Keter Press 148 pp.).

JantunenR. (1964). Moulting of Caenorhabditis briggsae (Rhabditidae). Nematologica 10419-424.

KnightC.G.PatelM.N.AzevedoR.B.R.LeroiA.M. (2002). A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evolution & Development 416-27.

KumluM.FletcherD.J.FisherC.M. (1998). Larval pigmentation, survival and growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquaculture Nutrition 4193-200.

LavensP.SorgeloosP. (1996). Introduction. In: LavensP.SorgeloosP. (Eds). Manual on the production and use of live food for aquaculture. Rome, ItalyFAO pp.  1-7.

LavensP.SorgeloosP. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 181397-403.

LaybournJ. (1979). The effects of temperature on the respiration and production of the freshwater nematode Anonchus sp. Oecologia 41329-337.

LeroiA.M.JonesJ. (1998). Developmental biology. In: PerryR.N.WrightD.J. (Eds). The physiology and biochemistry of free-living and plant-parasitic nematodes. Wallingford, UKCABI Publishing pp.  155-179.

LewisS.DyalL.HilburnC.WeitzS.LiauW.-S.LamunyonC.DenverD. (2009). Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the antarctic species P. davidi. BMC Evolutionary Biology 915.

LubzensE. (1987). Raising rotifers for use in aquaculture. Hydrobiologia 147245-255.

LubzensE.TandlerA.MinkoffG. (1989). Rotifers as food in aquaculture. Hydrobiologia 186-187387-400.

MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9271-284.

NicholasW.L. (1962). A study of a species of Acrobeloides (Cephalobidae) in laboratory culture. Nematologica 899-109.

Oliva-TelesA.GoncalvesP. (2001). Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisiae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202269-278.

OlsenY. (2004). Live food technology of cold-water marine fish larvae. In: MoksnessE.KjorsvikE.OlsenY. (Eds). Culture of cold-water marine fish. Oxford, UKBlackwell Publishing pp.  73-128.

PatelM.N.PerryR.N.WrightD.J. (1997). Desiccation survival and water contents of entomopathogenic nematodes, Steinernema spp. (Rhabditida: Steinernematidae). International Journal for Parasitology 2761-70.

PlanasM.CunhaI. (1999). Larviculture of marine fish: problems and perspectives. Aquaculture 177171-190.

RicciM.FifiA.P.RagniA.SchlechtriemC. (2003). Development of low-cost technology for mass production of the free-living nematode Panagrellus redivivus as an alternative live food for first feeding fish larvae. Applied Microbiology and Biotechnology 60556-559.

RobinJ.GatesoupeF. (2001). Feeding fish larvae with live prey. In: GuillaumeJ.KaushikS.BergotP.MétaillerR. (Eds). Nutrition and feeding of fish and crustaceans. London, UKSpringer pp.  213-228.

RottmannR.W.ShiremanJ.V.LincolnE.P. (1991). Comparison of three live foods and two dry diets for intensive culture of grass carp and bighead carp larvae. Aquaculture 96269-280.

SautterJ.KaiserH.FockenU.BeckerK. (2007). Panagrellus redivivus (Linné) as a live food organism in the early rearing of the catfish Synodontis petricola (Matthes). Aquaculture Research 38653-659.

SchiemerF. (1982). Food dependence and energetics of freeliving nematodes. I. Respiration, growth and reproduction of Caenorhabditis briggsae (Nematoda) at different levels of food supply. Oecologia 54108-121.

SchlechtriemC.RicciM.FockenU.BeckerK. (2004a). Mass produced nematodes Panagrellus redivivus as live food for rearing carp larvae: preliminary results. Aquaculture Research 35547-551.

SchlechtriemC.RicciM.FockenU.BeckerK. (2004b). The suitability of the free-living nematode Panagrellus redivivus as live food for first-feeding fish larvae. Journal of Applied Ichthyology 20161-168.

ShannonA.J.BrowneJ.A.BoydJ.FitzpatrickD.A.BurnellA.M. (2005). The anhydrobiotic potential and molecular phylogenetics of species and strains of Panagrolaimus (Nematoda, Panagrolaimidae). Journal of Experimental Biology 2082433-2445.

StiernagleT. (2006). Maintenance of C. elegans. In: The C. elegans research community (Ed.) WormBook. The C. elegans Research Community. Available online at (accessed 04 July 2012).

StrauchO.StoesselS.EhlersR.-U. (1994). Culture conditions define automictic or amphimictic reproduction in entomopathogenic rhabditid nematodes of the genus Heterorhabditis. Fundamental and Applied Nematology 17575-582.

SulstonJ.HodgkinJ. (1988). Methods. In: WoodW.B. (Ed.). The nematode Caenorhabditis elegans. Cold Spring Harbor, NY, USACold Spring Harbor Laboratory Press pp.  587-606.

ThomasP.R. (1965). Biology of Acrobeles complexus Thorne, cultivated on agar. Nematologica 11395-408.

Van StappenG. (1996). Artemia – Introduction, biology and ecology of Artemia. In: LavensP.SorgeloosP. (Eds). Manual on the production and use of life food for aquaculture. Rome, ItalyFAO pp.  79-106.

VenetteR.C.FerrisH. (1997). Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biology & Biochemistry 30949-960.

VrankenG.HermanP.HeipC. (1988). Studies of the life-history and energetics of marine and brackish-water nematodes. I. Demography of Monhystera disjuncta at different temperature and feeding conditions. Oecologia 77296-301.

WhartonD.A. (1986). A functional biology of nematodes. Beckenham, UKCroom Helm.

WilkenfeldJ.S.LawrenceA.L.KubanF.D. (1984). Survival, metamorphosis and growth of penaeid shrimp larvae reared on a variety of algal and animal foods. Journal of the World Maricultural Society 1531-49.

WilsonM.GlenD.PearceJ.RodgersP. (1995). Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) with different bacteria in liquid and solid phase. Fundamental and Applied Nematology 18159-166.

WilsonP.A.G. (1976). Nematode growth patterns and the moulting cycle: the population growth profile. Journal of Zoology 179135-151.

WoombsM.Laybourn-ParryJ. (1984). Growth, reproduction and longevity in nematodes from sewage treatment plants. Oecologia 64168-172.


  • View in gallery

    Cubic regression of total length (TL in μm) and maximum body width (MBW in μm) data of 291 individuals of Panagrolaimus sp.

  • View in gallery

    Total body length values (in μm) of Panagrolaimus sp. obtained during Experiment 1 (A) (n=14978 nematodes) and Experiment 2 (B) (n=7540 nematodes).

  • View in gallery

    Mean population dynamics (n=5) including daily average values of yeast cell density, nematode number (×1000 individuals ml−1), nematode biomass (g l−1) and nematode total length size classes (in μm) over a cultivation period of 15 days in liquid culture at 25°C of Experiment 1 (A) and Experiment 2 (B).

  • View in gallery

    Population development of Panagrolaimus sp. from two different flask cultures (A and B) including daily yeast cell density, nematode number (×1000 individuals ml−1), nematode biomass (g l−1) and nematode total length size classes (in μm) over a cultivation period of 15 days in liquid culture at 25°C.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 17 17 13
Full Text Views 68 68 57
PDF Downloads 6 6 4
EPUB Downloads 0 0 0