Observations on the life cycle of potato cyst nematodes, Globodera rostochiensis and G. pallida, on early potato cultivars

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Potato cyst nematodes (PCN) are the most economically important nematode pests of potato. Early harvesting is part of a preventive management approach for very early potato varieties. In Belgium, tubers are harvested before 20 June because it is assumed that no cyst formation occurs by that date. However, this assumption might not be valid any more because of climate change, the availability of new cultivars (with new traits), and the increasing prevalence of Globodera pallida. Therefore, pot, microplot and field trials were conducted to study the life cycle of PCN in early potato-growing conditions. The development of populations of G. pallida on three potato cultivars, Eersteling (susceptible to PCN), Première (resistant to G. rostochiensis) and Ambassador (partially resistant to G. pallida) and that of G. rostochiensis on cv. Eersteling was monitored in the growth chamber with simulation of field temperatures of the season. On cvs Eersteling and Première, second-stage juveniles (J2), males, females and cysts of G. pallida populations were found 28, 56, 63 and 77 days after infestation with cysts (DAI), respectively. The number of degree days (DD) for G. pallida to complete its life cycle using a base temperature of 4°C was calculated 450 DD4. On cv. Ambassador, females of G. pallida were never observed. J2, males, females and cysts of G. rostochiensis were detected 42, 70, 70 and 84 DAI, respectively. This species needed 398 DD6 at a base temperature of 6°C to complete its life cycle. Observations in two fields and in microplots under prevailing weather conditions in 2013 revealed that cysts of G. pallida and G. rostochiensis were formed on June 12, when the accumulated degree days were 463 DD4 and 401 DD6, respectively. Our observations show that both species of Globodera develop earlier than was assumed based on previous data. Therefore, harvesting based on the accumulated heat above the basal development temperature required by PCN species can replace the set harvest date.

Nematology

International Journal of Fundamental and Applied Nematological Research

Sections

References

AlonsoR.AlemanyA.AndresM.F. (2011). Population dynamics of Globodera pallida (Nematoda: Heteroderidae) on two potato cultivars in natural field conditions in Balearic Islands, Spain. Spanish Journal of Agricultural Research 9, 589-596.

(2007). Council Directive 2007/33/EC of 11 June 2007 on the control of potato cyst nematodes and repealing Directive 69/465/EEC. Official Journal of the European Union.

(2010). Koninklijk besluit betreffende de bestrijding van het aardappelcysteaaltje en tot wijziging van het Koninklijk besluit van 19 november 1987 betreffende de bestrijding van voor planten en voor plantaardige producten schadelijk organismen. Belgisch Staatsblad, pp. 43485-43492.

AtkinsonH.J.UrwinP.E.McPhersonM.J. (2003). Engineering plants for nematode resistance. Annual Review of Phytopathology 41, 615-639.

BlokV.C.PatersonA.MartinR.PhillipsM.S. (2010). Reproduction of potato cyst nematodes: effects of temperature. Proceedings Crop Protection in Northern Britain 2010, Scotland, UK, University of Dundee, pp. 207-211.

ByrdD.W.KirkpatrickT.Jr.BarkerK.R. (1983). An improved technique for clearing and staining plant tissue for detection of nematodes. Journal of Nematology 15, 142-143.

Den NijsL.J.M.F.LockC.A.M. (1992). Differential hatching of the potato cyst nematodes Globodera rostochiensis and G. pallida in root diffusates and water of differing ionic composition. Netherlands Journal of Plant Pathology 98, 117-128.

Den OudenH. (1960). Periodicity in spontaneous hatching of Heterodera rostochiensis in the soil. Nematologica Supplement II, 101-105.

DevineK.J.JonesP.W. (2000). Effects of hatching factors on potato cyst nematode hatch and in-egg mortality in soil and in vitro. Nematology 3, 65-74.

EllenbyC.SmithL. (1975). Temperature adaptation in the potato cyst nematode, Heterodera rostochiensis. Nematologica 21, 114-115.

EvansS.G.WrightD.J. (1982). Effects of the nematicide oxamyl on life cycle stages of Globodera rostochiensis. Annals of Applied Biology 100, 511-519.

FootM.A. (1978). Temperature responses of three potato cyst nematode populations from New Zealand. Nematologica 24, 412-417.

FrancoJ. (1979). Effect of temperature on hatching and multiplication of potato cyst-nematodes. Nematologica 25, 237-244.

GraingerJ. (1964). Factors affecting the control of eelworm diseases. Nematologica 10, 5-20.

GrecoN.InserraR.N.BrandonisioA.TirroA.De MarinisG. (1988). Life cycle of Globodera rostochiensis on potato in Italy. Nematologia Mediterranea 16, 69-73.

HaydockP.P.J.EvansK. (1998). Management of potato cyst nematodes in UK: an integrated approach. Outlook on Agriculture 27, 253-260.

HaydockP.P.J.EmmaL.AmbroseE.L.WilcoxA.DeliopoulosT. (2012). Degradation of the nematicide oxamyl under field and laboratory conditions. Nematology 14, 339-352.

HeijbroekW. (1977). Partial resistance of sugarbeet to beet cysts eelworm (Heterodera schachtii Schm.). Euphytica 26, 257-262.

HendrickxG. (1995). An automatic apparatus for extracting free-living nematode stages from soil. Nematologica 41, 308.

HermsD.A. (2004). Using degree-days and plant phenology to predict pest activity. In: KrischikV.DavidsonJ. (Eds). IPM of midwest landscapes. St. Paul, MN, USA, University of Minnesota, pp.  49-59.

HolgadoR.MagnussonC. (2010). Management of PCN (Globodera spp.) populations under Norwegian conditions. Proceedings of the 3rd Symposium on Potato Cyst Nematodes, Harper Adams University College, UK. Aspects of Applied Biology 103, 85-92.

HominickW.M. (1979). Selection for hatching at low temperatures in Globodera rostochiensis by continuous cultivation of early potatoes. Nematologica 25, 322-332.

LaMondiaJ.A.BrodieB.B. (1986). Effects of initial nematode density on population dynamics of Globodera rostochiensis on resistant and susceptible potatoes. Journal of Nematology 18, 159-165.

LangeslagM.MugniéryD.FayetG. (1982). Développement embryonnaire de Globodera rostochiensis and G. pallida en fonction de la température, en conditions contrôlées et naturelles. Revue de Nématologie 5, 103-109.

MolendijkL.P.G.van BeersT.G.SchepelE.SchomakerC.H. (2010). Role of granular nematicides in the control of PCN in potato implementation within the decision support system NemaDecide. 30th International Symposium of the European Society of Nematologists, Vienna, Austria, p. 38.

MugniéryD. (1978). Vitesse de développement en fonction de la température de Globodera rostochiensis et G. pallida (Nematoda: Heteroderidae). Revue de Nématologie 1, 3-12.

MullinB.A.BrodieB.B. (1988). Effects of host resistance on second-stage juveniles and adult males of Globodera rostochiensis. Journal of Nematology 20, 335-339.

PerryR.N. (1997). Plant signals in nematode hatching and attraction. In: FenollC.GrundlerF.M.W.OhlS.A. (Eds). Cellular and molecular aspects of plant-nematode interactions. Dordrecht, The Nethrlands, Kluwer Academic Publishers, pp.  38-50.

PerryR.N.WrightD.J.ChitwoodD.J. (2013). Reproduction, physiology and biochemistry. In: PerryR.N.MoensM. (Eds). Plant nematology, 2nd edition. Wallingford, UK, CAB International, pp.  220-245.

PhilisJ. (1980). Life history of the potato cyst-nematode Globodera rostochiensis in Cyprus. Nematologica 26, 295-301.

PhillipsM.S.HackettC.A.TrudgillD.L. (1991). The relationship between the initial and final population densities of the potato cyst nematode Globodera pallida for partially resistant potatoes. Journal of Applied Ecology 28, 109-119.

PickupJ.ColeY.ReidA.KerrJ.SpeirsJ.MacRaeD. (2012). Potato cyst nematodes: initial impressions of the impact of the new EU directive in Scotland. In: Proceedings of the crop protection in Northern Britain conference, pp. 227-232.

RawsthorneD.BrodieB.B. (1986). Relationship between root growth of potato, root diffusate production, and hatching of Globodera rostochiensis. Journal of Nematology 18, 379-384.

RobinsonM.P.AtkinsonH.J.PerryR.N. (1987a). The influence of temperature on the hatching, activity and lipid utilisation of second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida. Revue de Nématologie 10, 349-354.

RobinsonM.P.AtkinsonH.J.PerryR.N. (1987b). The influence of soil moisture and storage time on the motility, infectivity and lipid utilisation of second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida. Revue de Nématologie 10, 343-348.

RoltschW.J.ZalomF.G.StrawnA.J.StrandJ.F.PitcairnM.J. (1999). Evaluation of several degree-day estimation methods in California climates. International Journal of Biometeorology 42, 169-176.

RyanN.A.JonesP. (2003). Effect of tuber-borne microorganisms on hatching activity of potato cyst nematodes. Nematology 5, 55-63.

SeinhorstJ.W. (1964). Methods for the extraction of Heterodera cysts from not previously dried soil samples. Nematologica 10, 87-94.

SeinhorstJ.W. (1967). The relationships between population increase and population density in plant-parasitic nematodes. Nematologica 13, 157-171.

SmeltJ.H.CrumS.J.H.TeunissenW.LeistraM. (1987). Accelerated transformation of aldicarb, oxamyl and ethoprophos after repeated soil treatments. Crop Protection 6, 295-303.

TiilikalaK. (1987). Life cycle of potato cyst nematode in Finland. Annales Agriculturae Fenniae 26, 171-179.

TrudgillD.L.ElliottM.J.EvansK.PhillipsM.S. (2003). The white potato cyst nematode (Globodera pallida) – a critical analysis of the threat in Britain. Annals of Applied Biology 143, 73-80.

TurnerS.J.StoneA.R. (1981). Hatching of potato cyst nematodes (Globodera rostochiensis, G. pallida) in root exudates of Solanum vernei hybrids. Nematologica 27, 315-318.

VreugdenhilD.BradshawJ.GebhardtC.GoversF.TaylorM.A.MackerronD.K.L.RossH.A. (2007). Potato biology and biotechnology: advances and perspectives. Frankfurt, Germany, Elsevier.

WebleyD.P.JonesF.G.W. (1981). Observations on Globodera pallida and G. rostochiensis on early potatoes. Plant Pathology 30, 217-224.

WhiteheadA.G.TiteD.J.FraserJ.E.NicholsA.J.F. (1984). Differential control of potato cyst-nematodes, Globodera rostochiensis and G. pallida by oxamyl and the yields of resistant and susceptible potatoes in treated and untreated soils. Annals of applied Biology 105, 231-244.

WilsonL.T.BarnettW.W. (1983). Degree-days: an aid in crop and pest management. California Agriculture 37, 4-7.

Figures

  • Soil temperatures (average day and night temperatures) in the growth chamber, microplots and fields at increasing days after infestation (DAI) or planting (DAP).

    View in gallery
  • Occurrence of developmental stages of Globodera spp. (populations) and heat accumulation (DD) on potato cvs Eersteling, Première and Ambassador in the growth chamber (temperature following 6-years’ statistics in growing period of early potatoes). On cv. Ambassador, no females or cysts of G. pallida were formed. DAI = days after infestation; DD4 = accumulated DD above 4°C; DD6 = accumulated DD above 6°C; Gr = Globodera rostochiensis; Gp = G. pallida.

    View in gallery
  • Growth chamber experiment. Quantification of life stages of Globodera pallida GOV 038 in soil planted to different potato cultivars at increasing days after infestation (DAI).

    View in gallery
  • Growth chamber experiment. Quantification of life stages of Globodera pallida GOV 038 in 5 g root of different potato cultivars at increasing days after infestation (DAI).

    View in gallery
  • Final population densities of Globodera pallida and G. rostochiensis in the growth chamber and microplots after infestation with cysts at Pi=2.7 eggs (cm3 soil)−1 on 20 June (final harvest date).

    View in gallery
  • Growth chamber experiment. Quantification of life stages of Globodera pallida Chavorney, G. pallida GOV 038 and G. rostochiensis in soil planted to potato cv. Eersteling at increasing days after infestation (DAI). G. Pa = G. pallida.

    View in gallery
  • Growth chamber experiment. Quantification of life stages of Globodera pallida Chavorney, G. pallida GOV 038 and G. rostochiensis in 5 g root of potato cv. Eersteling at increasing days after infestation (DAI). G. Pa = G. pallida.

    View in gallery
  • Microplot experiment. Quantification of life stages of Globodera pallida GOV 038 and G. rostochiensis in soil at increasing time after infestation.

    View in gallery
  • Microplot experiment. Quantification of life stages of Globodera pallida GOV 038 and G. rostochiensis in 5 g root at increasing time after infestation.

    View in gallery
  • Field observation. Quantification of life stages of Globodera pallida in soil at increasing time after planting in the field (A: Roeselare; B: Tielt).

    View in gallery
  • Field observation. Quantification of life stages of Globodera pallida in 5 g root at increasing time after planting in the field (A: Roeselare; B: Tielt).

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 33 33 15
Full Text Views 19 19 19
PDF Downloads 2 2 2
EPUB Downloads 1 1 1