Description of two Pseudaphelenchus species (Tylenchomorpha: Aphelenchoididae) associated with Asian termites and proposal of Tylaphelenchinae n. subfam.

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Two new Pseudaphelenchus species were discovered from subterranean and arboreal termites from the East Asian subtropics. Pseudaphelenchus sui n. sp. isolated from Coptotermes formosanus was collected from Miyako Isl., Okinawa, Japan, and P. scheffrahni n. sp. was isolated from Nasutitermes takasagoensis collected from the Kenting National Park in Taiwan. The two new species and P. vindai, previously described from Panamanian termites, are close to each other, and are not easily distinguished morphologically, i.e., these three are almost ‘cryptic species’. However, they can be distinguished based on minor morphological differences, including shape of male bursa (clearest in P. vindai, vague in P. sui n. sp. and intermediate in P. scheffrahni n. sp.), male tail tip (P. sui n. sp. often have a small mucron but the others do not), and in the character of the female tail (the two new species have stronger ventral curvature than P. vindai, and further, P. sui n. sp. has clear annulation at distal part, while the other species do not). Molecular phylogenetic analysis based upon near-full-length sequences of the small subunit of the ribosomal RNA gene suggested that Pseudaphelenchus and Tylaphelenchus form a strongly-supported clade at the base of the family Aphelenchoididae, and that Tylaphelenchus is included in Pseudaphelenchus as an inner clade. Therefore, based on their phylogenetic status and common morphological characters, e.g., small body and spherical median bulb, a subfamily, Tylaphelenchinae n. subfam. is proposed to embrace these two genera. In addition, Ruehmaphelenchus ipidicola n. comb. (= Tylaphelenchus ipidicola) is proposed.

Description of two Pseudaphelenchus species (Tylenchomorpha: Aphelenchoididae) associated with Asian termites and proposal of Tylaphelenchinae n. subfam.

in Nematology

Sections

References

AndrássyI. (2007). Free-living nematodes of Hungary II (Nematoda errantia). Pedozoologica Hungarica No. 4 (Series Editors: CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

BaujardP. (1984). Remarques sur la sous-famille des Ektaphelenchinae Paramonov, 1964 et proposition d’Ektaphelenchoides n. gen. (Nematoda: Aphelenchoididae). Revue de Nématologie 7147-171.

BraaschH. (2009). Re-establishment of Devibursaphelenchus Kakuliya, 1967 (Nematoda, Aphelenchoididae) and proposal for a new combination of several Bursaphelenchus species. Journal of Nematode Morphology and Systematics 121-5.

CobbN.A. (1927). Note on a new nema, Aphelenchus retusus, with a proposed division of Aphelenchus into three subgenera. Journal of Parasitology 1457-58.

DevdarianiT.G. (1970). [ Tylaphelenchus georgiensis n. sp. (Nematoda: Aphelenchoididae).] Soobschcheniya Akademii Nauk Gruzinskoi SSR 58717-720.

FischerM. (1894). Über eine Clematis-krankheit. Bericht aus dem Physiolischen Laboratorium des Landwirthschaftlichen Instituts der Universitat Halle 31-11.

FuchsA.G. (1931). Seinura gen. nov. Zoologischer Anzeiger 94226-228.

FuchsA.G. (1937). Neue parasitische und halbparasitische Nematoden bei Borkenkäfern und einige andere Nematoden. I. Teil. Zoologische Jahrbücher Abteilung für Systematik Ökologie und Geographie der Tiere 70291-380.

GoodeyJ.B. (1960). The classification of the Aphelenchoidea Fuchs, 1937. Nematologica 5111-126.

GoodeyJ.B. (1963). Soil and freshwater nematodes2nd edition. London, UKMethuen.

GuJ.WangJ.ChenX. (2013). Description of Ektaphelenchus taiwanensis sp. n. (Nematoda: Ektaphelenchinae) found in packaging wood from Taiwan. Nematology 15329-338.

GuindonS.DufayardJ.F.LefortV.AnisimovaM.HordijkW.GascuelO. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59307-321.

HooperD.J. (1986). Handling, fixing, staining and mounting nematodes. In: SoutheyJ.F. (Ed.). Laboratory methods for work with plant and soil nematodes. London, UKHer Majesty’s Stationery Office pp.  59-80.

HuangR.YeW.LiangJ.LuQ.ZhangX. (2012). Tylaphelenchus jiaae n. sp. and Aphelenchoides varicaudatus (Nematoda: Aphelenchoidinae) from Simao pine in Yunnan Province, China. Nematology 1493-108.

HuelsenbeckJ.P.RonquistF. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 171754-1755.

HuntD.J. (1993). Aphelenchida Longidoridae and Trichodoridae: their systematics and bionomics. Wallingford, UKCABI Publishing.

HuntD.J. (2008). A checklist of the Aphelenchoidea (Nematoda: Tylenchina). Journal of Nematode Morphology and Systematics 10(2007) 99-135.

KakuliaG.A. (1963). [ Tylaphelenchus paramonovi n. sp.] Soobschcheniya Akademii Nauk Gruzinskoi SSR 32649-654.

KakuliaG.A. (1967). [ New nematode genus, Devibursaphelenchus n. g. (Nematoda: Aphelenchoididae).] Soobschcheniya Akademii Nauk Gruzinskoi SSR 47439-443.

KanzakiN. (2013). Simple methods for morphological observation of nematodes. Nematological Research 439-13.

KanzakiN. (2014). Ektaphelenchoides spondylis is a predatory nematode. Nematology 16245-247.

KanzakiN.FutaiK. (2002). A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within xylophilus group. Nematology 435-41.

KanzakiN.Giblin-DavisR.M. (2012). Aphelenchoidea. In: Manzanilla-LópezR.H.Marbán-MendozaN. (Eds). Practical plant nematology. Jalisco, MexicoColegio de Postgraduados and Mundi-Prensa, Biblioteca Básica de Agricultura pp.  161-208.

KanzakiN.TanakaR. (2013). Sheraphelenchus sucus n. sp. (Tylenchina: Aphelenchoididae) isolated from sap flow of Quercus serrata in Japan. Nematology 15975-990.

KanzakiN.Giblin-DavisR.M.ScheffrahnR.H.CenterB.J.DaviesK.A. (2009). Pseudaphelenchus yukiae n. gen., n. sp. (Tylenchina: Aphelenchidae) associated with Cylindrotermes macrognathus (Termitidae: Termitinae) in La Selva, Costa Rica. Nematology 11869-881.

KanzakiN.Giblin-DavisR.M.HerreE.A.ScheffrahnR.H.CenterB.J. (2010). Pseudaphelenchus vindai n. sp. (Tylenchomorpha: Aphelenchoididae) associated with termites (Termitidae) in Barro Colorado Island, Panama. Nematology 12905-914.

KanzakiN.Giblin-DavisR.M.ScheffrahnR.H.TakiH.EsquivelA.DaviesK.A.HerreE.A. (2012). Reverse taxonomy for tying diversity of termite-associated nematodes: a practical application of methodology. PLoS One 7e43865. DOI:10.1371/journal.pone.0043865

KanzakiN.TakiH.MasuyaH.OkabeK.ChenC.-Y. (2013a). Description of Ruehmaphelenchus formosanus n. sp. (Tylenchina: Aphelenchoididae) isolated from Euwallacea fornicates from Taiwan. Nematology 15895-906.

KanzakiN.TanakaR.IkedaH.TakiH.SugiuraS.MatsumotoK. (2013b). Phylogenetic status of and insect parasitism in the subfamily Entaphelenchinae Nickle with description of Peraphelenchus orientalis n. sp. (Tylenchomorpha: Aphelenchoididae). Journal of Parasitology 99639-649.

KatohK.MisawaK.KumaK.MiyataT. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 303059-3066.

KikuchiT.AikawaT.OedaY.KarimN.KanzakiN. (2009). A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification (LAMP). Phytopathology 991365-1369.

LargetB.SimonD.L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16750-759.

LieutierF.LaumondC. (1978). Nématodes parasites et associés à Ips sexdentatus et Ips typographus (Coleoptera, Scolytidae) en région parisienne. Nematologica 2484-200.

MinagawaN.MizukuboT. (1994). A simple procedure of transferring nematodes to glycerol for permanent mounts. Japanese Journal of Nematology 2475.

PosadaD.CrandallK.A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14817-818.

RaskiD.J.ValenzuelaA. (1987). Descriptions of four new species of Criconematidae, male of Ogma terrestris (Tylenchida: Criconematoidea) and Tylaphelenchus yamani sp. n. (Aphelenchina: Aphelenchoididae). Nematologica 33149-166.

RühmW. (1956). Die Nematoden der Ipiden. Parasitologische SchriftenReihe 61-435.

RühmW. (1965). Brutbiologie und Morphologie einer Scolytidenart als Voraussetzung einer neuartigen Spezialisierung zweier Nematodenarten. Zeitschrift fur Angewandte Entomologie 55264-275.

SkarbilovichT.S. (1947). [ Revision of the systematics of the nematode family Anguillulinidae Baylis and Daubney, 1926.] Doklady Akademii Nauk SSR 57307-308.

TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 282731-2739.

TanakaR.KikuchiT.AikawaT.KanzakiN. (2012). Simple and quick methods for nematode DNA preparation. Applied Entomology and Zoology 47291-294.

YeW.Giblin-DavisR.M.BraaschH.MorrisK.ThomasW.K. (2007). Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 431185-1197.

ZhaoZ.YeW.Giblin-DavisR.M.LiD.ThomasW.K.DaviesK.A.RileyI.T. (2008). Morphological and molecular analysis of six aphelenchoidoids from Australian conifers and their relationship to Bursaphelenchus (Fuchs, 1937). Nematology 10663-678.

Figures

  • View in gallery

    Pseudaphelenchus sui n. sp. A: Female; B: Male; C: Stylet; D: Anterior part of female; E, F: Female reproductive tract in different focal planes showing internal structure and surface view, respectively, where ovary (ov), oviduct (od), spermatheca (sp), crustaformeria (cr), uterus (ut), vagina/vulva (v/v) and post-uterine sac (pus) are arranged from anterior; G: Lateral view of female tail and tail tip variation; H: Ventral view of male tail; I: Lateral view of male tail; J: Lateral view of spicule.

  • View in gallery

    Pseudaphelenchus sui n. sp. A: Anterior region in different focal planes showing close-up of stylet (upper rectangle), close-up of lateral field (lower rectangle), excretory pore (ep + arrowhead), nerve ring (nr) and hemizonid (h + arrowhead); B: Female reproductive tract in different focal planes where ovary (ov), oviduct (od), spermatheca (sp), crustaformeria (cr), uterus (ut) vulval opening (v + arrowhead) and post-uterine sac (pus) are arranged from anterior; C: Ventral view of female vulva in different focal planes; D: Female tail showing variation indicating anal opening by arrowhead (an); E: Ventral view of female tail with arrowhead indicating anal opening (an). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Pseudaphelenchus sui n. sp. A: Lateral view of male tail in different focal planes showing cloacal opening (co) and genital papillae (P + number); B: Ventral view of male tail in different focal planes showing cloacal opening (co) and genital papillae (P + number). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Pseudaphelenchus scheffrahni n. sp. A: Female; B: Male; C: Stylet; D: Anterior part of female; E: Female reproductive tract where ovary (ov), oviduct (od), spermatheca (sp), crustaformeria (cr), uterus (ut), vagina/vulva (v/v) and post-uterine sac (pus) are arranged from anterior; F: Lateral view of female tail and tail tip variations; G: Lateral view of male tail; H: Ventral view of male tail; I: Lateral view of spicule.

  • View in gallery

    Pseudaphelenchus scheffrahni n. sp. A: Anterior region in different focal planes; B: Ventral view of male tail in different focal planes showing cloacal opening (co) and genital papillae (P + number); C: Lateral view of male tail in different focal planes showing cloacal opening (co) and genital papillae (P + number); D: Variation of male spicule. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Pseudaphelenchus scheffrahni n. sp. A: Female reproductive tract indifferent focal planes where ovary (ov), oviduct (od), spermatheca (sp), crustaformeria (cr), uterus (ut), vagina/vulva (v/v) and post-uterine sac (pus) are arranged from anterior; B: Ventral view of female vulval opening; C: Lateral view of female tail showing tail tip position (arrow) and morphology (enclosed in circle); D: Ventral view of female tail with arrow indicating anal opening. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Molecular phylogenetic relationship among 123 species of nematode. The 10 001st Bayesian tree inferred from near full length SSU was generated under GTR + I + G model. Posterior probability values exceeding 50% are given on appropriate clades. The accession numbers and taxonomic status of MOTUs (Molecular Operational Taxonomic Unit) are listed in Table S1 in the Supplementary material in the online version of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Molecular phylogenetic relationship among 123 species of nematode. The maximum likelihood tree inferred from near full length SSU was generated under GTR + I + G model. Boot strap support exceeding 50% are given on appropriate clades. The accession numbers and taxonomic status of MOTUs (Molecular Operational Taxonomic Unit) are listed in Table S1.

  • View in gallery

    Molecular phylogenetic relationship among 123 species of nematode. The unweighted maximum parsimony tree was inferred from near full length SSU. Boot strap support exceeding 50% are given on appropriate clades. The accession numbers and taxonomic status of MOTUs (Molecular Operational Taxonomic Unit) are listed in Table S1.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 5
Full Text Views 2 2 2
PDF Downloads 0 0 0
EPUB Downloads 0 0 0