Targeting internal processes of plant-parasitic nematodes in the pursuit of novel agents for their control

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The success of plant-parasitic nematodes as competitors with humans for crops is evidenced by the parasites’ significant and continuous economic drain on global agriculture. Scientific efforts dedicated to the control of plant-parasitic nematodes employ strategies from the environmental to molecular levels. Understanding the interaction of the nematode with its environment, and the molecules involved, offers great promise for novel control agent development. Perhaps more significantly, such knowledge facilitates the generation of ever more detailed and sophisticated information on nematode biology and new molecular targets. Among the most economically important groups of plant-parasitic nematodes are those comprising the cyst-forming species and the root-knot nematodes. Presented here is a brief overview of research into the biology of these parasites relative to their life cycles. Recent advances in elucidating the molecular biology and biochemistry of nematode-plant interactions during the internal parasitic stages of the life cycle have been driven by advances in genomics and transcriptomics. The remarkable discoveries regarding parasitism, and the application of genetic resources in these findings, provide a template for advanced investigation of external, survival stages biology. While survival biology research lags somewhat behind that of parasitism with regard to the molecular genetics of signalling and response, its extensive catalogue promises explosive rates of discovery as progress in genomics and transcriptomics allows a molecular genetic examination of embryogenesis, dormancy and hatching. Our group is interested in behaviour, development and hatching of cyst and root-knot nematodes, and the effects of the environment on the mechanisms of these activities. Phytochemical and temperature effects are discussed, and evidence is presented that the cyst may provide useful molecules for exploring nematode physiology.

Nematology

International Journal of Fundamental and Applied Nematological Research

Sections

References

AbadP.McCarterJ.P. (2011). Genome analysis of plant parasitic nematodes. In: JonesJ.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Heidelberg, Germany, Springer, pp.  103-117.

AbadP.GouzyJ.AuryJ.-M.Castagnone-SerenoP.DanchinE.G.J.DeleuryE.Perfus-BarbeochL.AnthouardV.ArtiguenaveF.BlokV.C. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26, 909-915.

AbbasS.WinkM. (2010). Epigallocatechin gallate inhibits beta amyloid oligimerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 17, 902-909.

AlstonD.G.SchmittD.P. (1988). Development of Heterodera glycines life stages as influenced by temperature. Journal of Nematology 20, 366-372.

AtkinsonL.E.StevensonM.McCoyC.J.MarksN.J.FlemingC.ZamanianM.DayT.A.KimberM.J.MauleA.G.MousleyA. (2013). flp-32 ligand/receptor silencing phenocopy faster plant pathogenic nematodes. PLoS Pathogens 9, e1003169.

BirdD. McK.JonesJ.T.OppermanC.H.KikuchiT.DanchinE.G. (2014). Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, http://dx.doi.org/10.1017/S0031182013002163.

BlaxterM.KoutsovoulosG. (2014). The evolution of parasitism in Nematoda. Parasitology, http://dx.doi.org/10.1017/S0031182014000791.

BonfiliL.CuccioloniM.MozzicafreddoM.CecariniV.AngelettiM.EleuteriA.M. (2011). Identification of an EGCG oxidation derivative with proteasome modulatory activity. Biochimie 93, 931-940.

BrunetS.HosteH. (2006). Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. Journal of Agricultural and Food Chemistry 54, 7481-7487.

BuskovS.SerraB.RosaE.SorensenH.SorensenJ.C. (2002). Effects of intact glucosinolates and products produced from glucosinolates in myrosinase catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis cv. Woll). Journal of Agricultural and Food Chemistry 50, 690-695.

CaillaudM.-C.DubreuilG.QuentinM.Perfus-BarbeochL.LecomteP.de Almeida EnglerJ.AbadP.RossoM.-N.FaveryB. (2008). Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology 165, 104-113.

Castagnone-SerenoP.DanchinE.G.J.Perfus-BarbeochL.AbadP. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annual Review of Phytopathology 51, 203-220.

ChitwoodD.J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40, 221-249.

ChitwoodD.J.PerryR.N. (2009). Reproduction, physiology and biochemistry. In: PerryR.N.MoensM.StarrJ.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp.  182-200.

ClarkeA.J. (1968). The chemical composition of the cyst wall of the potato cyst-nematode, Heterodera rostochiensis. Biochemical Journal 108, 221-224.

ClarkeA.J.PerryR.N. (1985). The role of egg-shell calcium in the hatching of Heterodera schachtii. Nematologica 32, 151-158.

CottonJ.A.LilleyC.J.JonesL.M.KikuchiT.ReidA.J.ThorpeP.TsaiI.J.BeasleyH.BlokV.CockP.J.A. (2014). The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology 15, R43, available online at http://genomebiology.com/2014/15/3/r43.

CurtisR.H.C. (2008). Plant-nematode interactions: environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15, 310-316.

CurtisR.H.C.RobinsonA.F.PerryR.N. (2009). Hatch and host location. In: PerryR.N.MoensM.StarrJ.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp.  139-162.

DanchinE.G.J.ArguelM.-J.Campan-FournierA.Perfus-BarbeochL.MaglianoM.RossoM.-N.Da RochaM.Da SilvaC.NottetN.LabadieK. (2013). Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathogens 9, e1003745, DOI:10.1371/journal.ppat.1003745.

DavisE.L.HusseyR.S.MitchumM.BaumT.J. (2008). Parasitism proteins in nematode-plant interactions. Current Opinion in Plant Biology 11, 360-366.

DieterichC.SommerR.J. (2009). How to become a parasite-lessons from the genomes of nematodes. Trends in Genetics 25, 203-209.

DillmanA.R.MortazaviA.SternbergP.W. (2012). Incorporating genomics into the toolkit of nematology. Journal of Nematology 44, 191-205.

DouQ.P. (2009). Molecular mechanisms of green tea polyphenols. Nutrition and Cancer 61, 827-835.

DouQ.P.Landis-PiwowarK.R.ChenD.HuoC.WanS.B.ChanT.H. (2008). Green tea polyphenols as a natural tumour cell proteasome inhibitor. Inflammopharmacology 16, 208-212.

EllingA.A.MitrevaM.RecknorJ.GaiX.MartinJ.MaierT.R.McDermottJ.P.HeweziT.BirdD. McK.DavisE.L. (2007). Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines. Genome Biology 8, R211.

EscobarC.BrownS.MitchumM.G. (2011). Transcriptomic and proteomic analysis of the plant response to nematode infection. In: BergR.H.TaylorC. (Eds). Cell biology of plant nematode parasitism. Berlin, Germany, Springer, pp.  157-173.

EvansA.A.F. (1998). Reproductive mechanisms. In: PerryR.N.WrightD.J. (Eds). The physiology and biochemistry of free-living and plant-parasitic nematodes. Wallingford, UK, CAB International, pp.  133-154.

EvansA.A.F.PerryR.N. (2009). Survival mechanisms. In: PerryR.N.MoensM.StarrJ.L. (Eds). Root-knot nematodes. Wallingford UK, CAB International, pp.  201-222.

GaoB.AllenR.MaierT.DavisE.L.BaumT.J.HusseyR.S. (2003). The parasitome of the phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions 16, 720-726.

GaurH.S.BeaneJ.PerryR.N. (2000). The influence of root diffusate, host age and water regimes on hatching of the root-knot nematode, Meloidogyne triticoryzae. Nematology 2, 191-199.

GimsengA.L.PoulsenJ.L.PedersenH.L.HansenH.C.B. (2007). Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environmental Science and Technology 41, 4271-4276.

HaegemanA.MantelinS.JonesJ.Y.GheysenG. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 492, 19-31.

Holden-DyeL.WalkerR.J. (2011). Neurobiology of plant parasitic nematodes. Invertebrate Neuroscience 11, 9-19.

JonesJ.T.RobertsonL.PerryR.N.RobertsonW.M. (1997). Changes in gene expression during stimulation and hatching of the potato cyst nematode Globodera rostochiensis. Parasitology 114, 309-315.

JonesJ.T.GheysenG.FenollC. (Eds) (2011). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer.

JonesJ.T.HaegemanA.DanchinE.G.J.GaurH.S.HelderH.JonesM.K.KikuchiT.Manzanilla-LópezR.Palomares-RiusJ.E.WesemaelW.M.L. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 946-961.

JonesL.M.De GeorgiC.UrwinP.E. (2011). C. elegans as a resource for studies on plant parasitic nematodes. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  175-220.

JonesP.W.TylkaG.L.PerryR.N. (1998). Hatching. In: PerryR.N.WrightD.J. (Eds). The Physiology and biochemistry of free-living and plant-parasitic nematodes. Wallingford, UK, CAB International, pp.  181-212.

KaulR. (1962). Untersuchungen über einen aus Zysten des Kartoffelnematoden (Heterodera rostochiensis Woll.) isolierten phenolischen Komplex. Nematologica 8, 288-292.

KhalloukS.VoisinR.PortierU.PolidoriJ.Van GhelderC.EsmenjaudD. (2013). Multiyear evaluation of the durability of the resistance conferred by Ma and RMia genes to Meloidogyne incognita in Prunus under controlled conditions. Phytopathology 103, 833-840.

KimM.DiersB.W. (2013). Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Crop Science 53, 775-785.

KoenningS.R.SipesB.S. (1998). Biology. In: SharmaS.B. (Ed.). The cyst nematodes. London, UK, Chapman & Hall, pp.  156-190.

KovalevaE.S.MaslerE.P.SkantarA.M.ChitwoodD.J. (2004). Novel matrix metalloproteinase from the cyst nematodes Heterodera glycines and Globodera rostochiensis. Molecular and Biochemical Parasitology 136, 109-112.

KumarS.SchifferP.H.BlaxterM. (2012). 959 nematode genomes: a semantic wiki for coordinating sequencing projects. Nucleic Acids Research 40, D1295-D1300.

LamW.H.KaziA.KuhnD.J.ChowL.M.C.ChanA.S.C.DouQ.P.ChanT.H. (2004). A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (–)-epigallocatechin gallate [(–)-EGCG]. Bioorganic & Medicinal Chemistry 12, 5587-5593.

LazzeriL.CurtoG.LeoniO.DallavalleE. (2004). Effects of glucosinolates and their enzymatic hydrolysis via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. Journal of Agricultural and Food Chemistry 52, 6703-6707.

LeeD.L. (2002). Life cycles. In: LeeD.L. (Ed.). The biology of nematodes. London, UK, Taylor & Francis, pp.  61-72.

LeeY.S.AneesM.HyunH.N.KimK.Y. (2013). Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology 15, 545-555.

LiC. (2005). The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131, S109-S127.

LiC.KimK. (2010). Neuropeptide gene families in Caenorhabditis elegans. In: GearyT.G.MauleA.G. (Eds). Neuropeptide systems as targets for pest and parasite control. New York, NY, USA, Landes Biosciences and Springer, pp.  98-137.

LiJ.XuH. (2012). Bioactive compounds from the bark of Eucalyptus exserta F. Muell. Industrial Crops and Products 40, 302-306.

LilleyC.J.AtkinsonH.J.UrwinP.E. (2005). Molecular aspects of cyst nematodes. Molecular Plant Pathology 6, 577-588.

LinJ.Y.MazareiM.ZhaoN.ZhuJ.J.ZhuangX.LiuW.PantaloneV.R.ArelliP.R.StewartC.N.ChenF. (2013). Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnology Journal 11, 1135-1145.

LiuS.KandothP.K.WarrenS.D.YeckelG.HeinzR.AldenJ.YangC.JamaiA.El-MelloukiT.JuvaleP.S. (2012). A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492, 256-262.

MaierT.R.HeweziT.PengJ.BaumT.J. (2013). Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Molecular Plant-Microbe Interactions 26, 31-35.

MartinuzA.SchoutenA.SikoraR.A. (2013). Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 58, 95-104.

MaslerE.P. (2010). In vitro comparison of protease activities in preparations from free-living (Panagrellus redivivus) and plant-parasitic (Meloidogyne incognita) nematodes using FMRFa and FMRFa-like peptides as substrates. Journal of Helminthology 86, 77-84.

MaslerE.P. (2012). In vitro proteolysis of nematode FMRFamide-like peptides (FLPs) by preparations from a free-living nematode (Panagrellus redivivus) and two plant-parasitic nematodes (Heterodera glycines and Meloidogyne incognita). Journal of Helminthology 84, 425-433.

MaslerE.P. (2013). Effects of catechin polyphenols and preparations from the plant-parasitic nematode Heterodera glycines on protease activity and behaviour in three nematode species. Journal of Helminthology, http://dx.doi.org/10.1017/S0022149X13000254.

MaslerE.P.RogersS.T. (2011). Effects of cyst components and low temperature exposure of Heterodera glycines eggs on juvenile hatching in vitro. Nematology 13, 837-844.

MaslerE.P.ZasadaI.A.SardanelliS.S. (2008a). Hatching behavior in Heterodera glycines in response to low temperature. Comparative Parasitology 75, 76-81.

MaslerE.P.DonaldP.A.SardanelliS. (2008b). Stability of Heterodera glycines (Tylenchida: Heteroderidae) juvenile hatching from eggs obtained from different sources of soybean, Glycine max. Nematology 10, 271-278.

MaslerE.P.ZasadaI.A.SardanelliS.RogersS.T.HalbrendtJ.M. (2010). Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum. Nematology 12, 693-699.

MaslerE.P.RogersS.T.ChitwoodD.J. (2013). Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita. Nematology 15, 653-663.

MatthiessenJ.N.ShackletonM.A. (2005). Biofumigation: experimental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Management Science 61, 1043-1051.

MauleA.G.CurtisR. (2011). Parallels between plant and animal parasitic nematodes. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  221-251.

McCarterJ.P. (2009). Molecular approaches toward resistance to plant-parasitic nematodes. In: BergR.H.TaylorC. (Eds). Cell biology of plant nematode parasitism. Berlin, Germany, Springer, pp.  239-267.

McVeighP.LeechS.MairG.R.MarksN.J.GearyT.G.MauleA.G. (2005). Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. International Journal for Parasitology 35, 1043-1060.

McVeighP.Alexander-BowmanS.VealE.MousleyA.MarksN.J.MauleA.G. (2008). Neuropeptide-like diversity in phylum Nematoda. International Journal for Parasitology 38, 1493-1503.

McVeighP.AtkinsonL.MarksN.J.MousleyA.DalzellJ.J.SluderA.HammerlandL.MauleA.G. (2012). Parasite neuropeptide biology: seeding rational drug target selection? International Journal for Parasitology: Drugs and Drug Resistance 2, 76-91.

MelakeberhanH.FerrisH.McKenryM.V.GaspardJ.T. (1989). Overwintering stages of Meloidogyne incognita in Vitis vinifera. Journal of Nematology 21, 92-98.

MoensM.PerryR.N.StarrJ.L. (2009). Meloidogyne species – a diverse group of novel and important plant parasites. In: PerryR.N.MoensM.StarrJ.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp.  1-17.

MolanA.L.MeagherL.P.SpencerP.A.SivakumaranS. (2003). Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. International Journal for Parasitology 33, 1691-1698.

MukaiD.MatsudaN.YosiokaY.SatoM.YamasakiT. (2008). Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans. Journal of Natural Medicines 62, 155-159.

NiblackT.L.LambertK.N.TylkaG.L. (2006). A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode. Annual Review of Phytopathology 44, 283-303.

NicolJ.M.TurnerS.J.CoyneD.L.den NijsL.HocklandS.Tanha MaafiZ. (2011). Current nematode threats to world agriculture. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  21-43.

NourS.M.LawrenceJ.R.ZhuH.SwerhoneG.D.W.WelshM.WelackyT.W.ToppE. (2003). Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines). Applied and Environmental Microbiology 69, 607-615.

NtalliN.CaboniP. (2012). Botanical nematicides: a review. Journal of Agricultural and Food Chemistry 60, 9929-9940.

OkaY. (2010). Mechanisms of nematode suppression by organic soil amendments-a review. Applied Soil Ecology 44, 101-115.

OppermanC.H.BirdD.M.WilliamsonV.M.RokhsarD.S.BurkeM.CohnJ.CromerJ.DienerS.GajanJ.GrahamS. (2008). Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America 105, 14802-14807.

Palomares-RiusJ.E.HedleyP.E.CockP.J.A.MorrisJ.A.JonesJ.T.VovlasN.BlokV. (2012). Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes. Molecular Plant Pathology 13, 1120-1134.

Palomares-RiusJ.E.JonesJ.T.CockP.J.A.CastilloP.BlokV. (2013). Activation of hatching in diapaused and quiescent Globodera pallida. Parasitology 140, 445-454.

PerryR.N. (1989). Dormancy and hatching of nematode eggs. Parasitology Today 5, 377-383.

PerryR.N. (1997). Plant signals in nematode hatching and attraction. In: FenollC.GrundlerF.M.W.OhlS.A. (Eds). Cellular and molecular aspects of plant-nematode interactions. Dordrecht, The Netherlands, Kluwer Academic Publishers, pp.  38-50.

PerryR.N. (2002). Hatching. In: LeeD.L. (Ed.). The biology of nematodes. New York, NY, USA, Taylor & Francis, pp.  147-169.

PerryR.N.GaurH.S. (1996). Host plant influences on the hatching of cyst nematodes. Fundamental and Applied Nematology 19, 505-510.

PerryR.N.MauleA.G. (2004). Physiological and biochemical basis of nematode behaviour. In: GauglerR.BilgramiA. (Eds). Nematode behaviour. Wallingford, UK, CAB International, pp.  197-238.

PerryR.N.MoensM. (2011a). Introduction to plant-parasitic nematodes: modes of parasitism. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Heidelberg, Germany, Springer, pp.  3-20.

PerryR.N.MoensM. (2011b). Survival of parasitic nematodes outside the host. In: PerryR.N.WhartonD.A. (Eds). Molecular and physiological basis of nematode survival. Wallingford, UK, CAB International, pp.  1-27.

PerryR.N.WesemaelW.M.L. (2008). Host plant effects on hatching of root knot nematodes. Russian Journal of Nematology 16, 1-5.

PerryR.N.WrightD.J. (Eds) (1998). The physiology and biochemistry of free-living and plant-parasitic nematodes. Wallingford, UK, CAB International.

PerryR.N.MoensM.StarrJ.L. (Eds) (2009). Root-knot nematodes. Wallingford, UK, CAB International.

PispaJ.PalmenS.HolmbergC.I.JanttiJ. (2008). C. elegans dss-1 is functionally conserved and required for oogenesis and larval growth. BMC Developmental Biology 8, 51, available online at http://www.biomedcentral.com/1471-213X/8/51.

PridannikovM.V.PetelinaG.G.PalchukM.V.MaslerE.P.DzhavakhiyaV.G. (2007). Influence of components of Globodera rostochiensis cyst on the in vitro hatch of second-stage juveniles. Nematology 9, 837-844.

SardanelliS.KenworthyW.L. (1997). Soil moisture control and direct seeding for bioassay of Heterodera glycines on soybean. Journal of Nematology 29, 625-634.

SasserJ.N.FreckmanD.W. (1987). A world perspective on nematology: the role of the Society. In: VeechJ.A.DicksonD.W. (Eds). Vistas on nematology. Hyattsville, MD, USA, Society of Nematologists, pp.  7-14.

SaulN.PietschK.MenzelR.SturzenbaumS.R.SteinbergC.E.W. (2009). Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mechanisms of Ageing and Development 130, 477-486.

ShepherdA.M.CoxP.M. (1967). Observations on periodicity of hatching of eggs of the potato cyst nematode, Heterodera rostochiensis Woll. Annals of Applied Biology 60, 143-150.

SinghB.N.ShankarS.SrivastavaR.K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical Pharmacology 82, 1807-1821.

SommervilleR.I.DaveyK.G. (2002). Diapause in parasitic nematodes: a review. Canadian Journal of Zoology 80, 1817-1840.

SubbotinS.A.WaeyenbergeL.MoensM. (2013). Molecular systematics. In: PerryR.N.MoensM. (Eds). Plant nematology, 2nd edition. Wallingford, UK, CAB International, pp.  40-72.

TeilletA.DybalK.KerryB.R.MillerA.J.CurtisR.H.C.HeddonP. (2013). Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS ONE 8, e61259.

ThompsonJ.M.TylkaG.L. (1997). Differences in hatching of Heterodera glycines egg-mass and encysted eggs in vitro. Journal of Nematology 29, 315-321.

TzortzakakisE.A.TrudgillD.L. (2005). A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology 27, 313-315.

ValdesY.ViaeneN.PerryR.N.MoensM. (2011). Effect of the green manures Sinapis alba, Brassica napus and Raphanus sativus on hatching of Globodera rostochiensis. Nematology 13, 965-975.

Van GundyS.D. (1965). Factors in survival of nematodes. Annual Review of Phytopathology 3, 43-68.

VervoortM.T.W.VonkJ.A.BrolsmaK.M.SchützeW.QuistC.W.de GoedeR.G.M.HofflandE.BakkerJ.MulderC.HallmannJ. (2014). Release of isothiocyanates does not explain the effects of biofumigation with Indian mustard cultivars on nematode assemblages. Soil Biology & Biochemistry 68, 200-207.

WangG.PengD.GaoB.HuangW.KongL.LongH.PengH.JianH. (2014). Comparative transcriptomic analysis of two races of Heterodera glycines at different developmental stages. PLoS One 9, e91634, 1-9.

WesemaelW.M.L.PerryR.N.MoensM. (2006). The influence of root diffusate and host age on hatching of the root-knot nematodes, Meloidogyne chitwoodi and M. fallax. Nematology 86, 895-902.

WilliamsonV.KumarA. (2006). Nematode resistance in plants: the battle underground. Trends in Genetics 22, 396-403.

WrightD.J.PerryR.N. (2006). Reproduction, physiology and biochemistry. In: PerryR.N.MoensM. (Eds). Plant nematology. Wallingford, UK, CAB International, pp.  187-202.

WuH.Y.MaslerE.P.RogersS.T.ChenC.ChitwoodD.J. (2014). Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines. Nematology 16, 495-504.

YenJ.H.NiblackT.L.WieboldW.J. (1995). Dormancy of Heterodera glycines in Missouri. Journal of Nematology 27, 153-163.

ZasadaI.A.FerrisH. (2003). Sensitivity of Meloidogyne javanica and Tylenchulus semipenetrans to isothiocyanates in laboratory assays. Phytopathology 93, 747-750.

ZasadaI.A.MaslerE.P.RogersS.T.HalbrendtJ.M. (2009). Behavioural response of Meloidogyne incognita to benzyl isothiocyanate. Nematology 11, 603-610.

ZasadaI.A.PeetzA.WadeN.NavarreR.A.InghamR.E. (2013). Host status of different potato (Solanum tuberosum) varieties and hatching in root diffusates of Globodera ellingtonae. Journal of Nematology 45, 195-201.

ZhengL.FerrisH. (1991). Four types of dormancy exhibited by eggs of Heterodera schachtii. Revue de Nématologie 14, 419-426.

Figures

  • Simplified life cycle of cyst and root-knot nematodes. The cycle is depicted as comprising four stages; parasitism and survival stages connected by two transitional stages. Internal-parasitism: Infective juveniles initiate parasitism through issuance of a variety of effector molecules that help to establish a feeding site, protect the parasite from plant defences, and support growth and development leading to mature adults and into Transition 1. During Transition 1, mature cyst-forming females expand through the root surface as distended saccate forms (eventual cyst) containing the majority of eggs, and with a gelatinous matrix containing a minority portion of the eggs. Mature root-knot females, which become encased within visible galls, also deposit their eggs in a gelatinous matrix. Mature males leave the root. External-survival: External events include maintenance of the protective gelatinous matrix, continuation of embryogenesis that began internally, mating and fertilisation, development to the J1 stage, a single moult to J2, and hatching of the infective J2. If environmental conditions are not suitable, un-hatched J2 may enter a quiescent or diapause state of developmental arrest until conditions improve. In this case, the external survival stage can be considerably extended in real time, but developmental time is suspended. When hatching occurs, it initiates Transition 2. The infective J2 seeks a host, penetrates the root, and initiates parasitism. Survival is dependent upon a successful Transition 2.

    View in gallery
  • Images of Heterodera glycines and Meloidogyne incognita females on roots of soybean (Glycine max) and okra (Abelmoschus esculentus), respectively. A: The head of a H. glycines female (fm) is embedded within the G. max root with the distended saccate portion of the female (sf) containing prominently exposed eggs. The posterior of the female exudes a gelatinous matrix (gm) in which eggs can collect. The majority of eggs remain within the sf. Cuticular tanning of the sf results in the protective cyst. In this image, mechanical disturbance in preparing the specimen caused extrusion of eggs, some of which are seen leaving the matrix; B: The M. incognita female (fm) resides within a protective root gall on A. esculentus, with the posterior gelatinous matrix exposed (eggs are not clearly visible in this image). Images from USDA Nematology Laboratory collection (A) and courtesy of Dr L.K. Carta, USDA Nematology Laboratory (B).

    View in gallery
  • Distribution of peer-reviewed research articles between host plant or plant-parasitic nematode as the main focus. Articles were selected from Nematological Abstracts searches using CAB Direct and criteria as described in Material and methods. Data were further sorted between cyst and root-knot nematodes, and expressed as total articles over 10 years. The nematode category is also sorted between biology and detection (see Materials and methods for details).

    View in gallery
  • Protease activities and protease inhibition in preparations from Heterodera glycines cysts and Panagrellus redivivus. Data are expressed as mean protease activity detected in 3-9 independent reactions. Means were compared with Student’s t-test and those followed by different letters are significantly different (P<0.05). Abbreviations: Pre, P. redivivus extract; HglCC, H. glycines cyst contents; N, native extract or contents; H, heated extract or contents.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 20 20 11
Full Text Views 4 4 4
PDF Downloads 0 0 0
EPUB Downloads 0 0 0