Plant-parasitic nematode feeding tubes and plugs: new perspectives on function

in Nematology
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Several structures associated with feeding by plant-parasitic nematodes have been described using two terms, feeding tubes and feeding plugs. However, both of these terms encompass multiple structures of independent evolution, some of which are functionally distinct. We have reviewed the literature on both structures and provide a new perspective on the function of intracellular feeding tubes to maintain the integrity and efficacy of the feeding site. We propose that they provide sufficient hydraulic resistance against the feeding site pressure to prevent it from collapsing during feeding. In addition, we propose that extracellular feeding tubes of migratory ectoparasites should be considered as the functional analogue of the stylet of all other plant-parasitic nematodes for withdrawal of host cell cytoplasm and, therefore, provide an example of convergent evolution. We also suggest that the main role of the feeding plug, irrespective of origin or composition, may be in adhesion.

Plant-parasitic nematode feeding tubes and plugs: new perspectives on function

in Nematology

Sections

References

AgudeloP.RobbinsR.T.StewartJ.M.BellA.RobinsonA.F. (2005). Histological observations of Rotylenchulus reniformis on Gossypium longicalyx and interspecific cotton hybrids. Journal of Nematology 37444-447.

AistJ.R. (1976). Papillae and related wound plugs of plant-cells. Annual Review of Phytopathology 14145-163.

BaldwinJ.G.NadlerS.A.AdamsB.J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology 4283-105.

BergR.FesterT.TaylorC. (2009). Development of the root-knot nematode feeding cell. In: BergR.TaylorC. (Eds). Cell biology of plant nematode parasitism. Berlin/Heidelberg, GermanySpringer pp.  115-152.

BlaxterM.L.De LeyP.GareyJ.R.LiuL.X.ScheldemanP.VierstraeteA.VanfleterenJ.R.MackeyL.Y.DorrisM.FrisseL.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 39271-75.

BockenhoffA.GrundlerF.M.W. (1994). Studies on the nutrient-uptake by the beet cyst-nematode Heterodera schachtii by in-situ microinjection of fluorescent-probes into the feeding structures in Arabidopsis thaliana. Parasitology 109249-254.

CohnE.MordechaiM. (1977). Uninucleate giant cell induced in soybean by the nematode Rotylenchulus macrodoratus. Phytoparasitica 585-93.

DaviesL.J.LilleyC.J.KnoxJ.P.UrwinP.E. (2012). Syncytia formed by adult female Heterodera schachtii in Arabidopsis thaliana roots have a distinct cell wall molecular architecture. New Phytologist 196238-246.

de Almeida EnglerJ.De VleesschauwerV.BurssensS.CelenzaJ.L.InzéD.Van MontaguM.EnglerG.GheysenG. (1999). Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11793-807.

EndoB.Y. (1978). Feeding plug formation in soybean roots infected with the soybean cyst nematode. Phytopathology 681022-1031.

Eves-van den AkkerS.LilleyC.J.AultJ.R.AshcroftA.E.JonesJ.T.UrwinP.E. (2014a). The feeding tube of cyst nematodes: characterisation of protein exclusion. PLoS One 9e87289.

Eves-van den AkkerS.LilleyC.J.DanchinE.G.J.RancurelC.CockP.J.A.UrwinP.E.JonesJ.T. (2014b). The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biology and Evolution DOI:10.1093/gbe/evu171.

GriffithsB.RobertsonW. (1984). Morphological and histochemical changes occurring during the life-span of root-tip galls on Lolium perenne induced by Longidorus elongatus. Journal of Nematology 16223-229.

GrundlerF.M.BöckenhoffA. (1997). Physiology of nematode feeding and feeding sites. In: FenollC.GrundlerF.M.OhlS.A. (Eds). Cellular and molecular aspects of plant-nematode interactions. Berlin/Heidelberg, GermanySpringer pp.  107-119.

GrymaszewskaG.GolinowskiW. (1998). Structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible and resistant radish (Raphanus sativus L. var. oleiformis). Acta Societatis Botanicorum Poloniae 67207-216.

HoltmannB.KleineM.GrundlerF.M.W. (2000). Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 21139-50.

HusseyR.S.MimsC.W. (1991). Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 16299-107.

JensenK.H.MullendoreD.L.HolbrookN.M.BohrT.KnoblauchM.BruusH. (2012). Modeling the hydrodynamics of phloem sieve plates. Frontiers in Plant Science 3151 DOI:10.3389/fpls.2012.00151.

JensenK.H.ValenteA.X.StoneH.A. (2014). Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Physics of Fluids (1994-present) 26052004.

JonesJ.T.HaegemanA.DanchinE.G.J.GaurH.S.HelderJ.JonesM.G.K.KikuchiT.Manzanilla-LópezR.Palomares-RiusJ.E.WesemaelW.M.L. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14946-961.

JonesM.G.K.PayneH.L. (1977). Structure of syncytia induced by phytoparasitic nematode Nacobbus aberrans in tomato roots, and possible role of plasmodesmata in their nutrition. Journal of Cell Science 23299-313.

KyndtT.VieiraP.GheysenG.de Almeida-EnglerJ. (2013). Nematode feeding sites: unique organs in plant roots. Planta 238807-818.

RazakA.R.EvansA.A.F. (1976). An intracellular tube associated with feeding by Rotylenchulus reniformis on cowpea root. Nematologica 22182-189.

ReboisR.V. (1980). Ultrastructure of a feeding peg and tube associated with Rotylenchulus reniformis in cotton. Nematologica 26396-405.

ReboisR.V.MaddenP.A.EldridgeB.J. (1975). Some ultrastructural changes induced in resistant and susceptible soybean roots following infection by Rotylenchulus reniformis. Journal of Nematology 7122-139.

RobinsonA.F.InserraR.N.Caswell-ChenE.P.VovlasN.TroccoliA. (1998). Rotylenchulus species: identification, distribution, host ranges, and crop plant resistance. Nematropica 27127-180.

RumpenhorstH.J. (1984). Intracellular feeding tubes associated with sedentary plant parasitic nematodes. Nematologica 3077-85.

SiddiqiM.R. (2000). Tylenchida parasites of plants and insects2nd edition. Wallingford, UKCAB International.

SimpsonD.J.LeeT.H. (1976). Fine-structure and formation of fibrils of Capsicum annuum L. chromoplasts. Zeitschrift Fur Pflanzenphysiologie 77127-138.

SobczakM.GolinowskiW. (2009). Structure of cyst nematode feeding sites. In: BergR.TaylorC. (Eds). Cell biology of plant nematode parasitism. Berlin/Heidelberg, GermanySpringer pp.  153-187.

SobczakM.GolinowskiW. (2011). Cyst nematodes and syncytia. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The NetherlandsSpringer pp.  83-102.

SobczakM.GolinowskiW.A.GrundlerF.M.W. (1999). Ultrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii. Nematology 1363-374.

SouzaR.M.BaldwinJ. (1998). Changes in esophageal gland activity during the life cycle of Nacobbus aberrans (Nemata: Pratylenchidae). Journal of Nematology 30275.

van MegenH.van den ElsenS.HoltermanM.KarssenG.MooymanP.BongersT.HolovachovO.BakkerJ.HelderJ. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11927-950.

WestcottS.W.HusseyR.S. (1992). Feeding behavior of Criconemella xenoplax in monoxenic cultures. Phytopathology 82936-940.

WyssU. (1982). Virus-transmitting nematodes: feeding behavior and effect on root cells. Plant Disease 66639-644.

WyssU. (1992). Observations on the feeding behaviour of Heterodera schachtii throughout development including events during moulting. Fundamental and Applied Nematology 1575-89.

WyssU.GrundlerF.M.W. (1992). Feeding-behavior of sedentary plant parasitic nematodes. Netherlands Journal of Plant Pathology 98165-173.

WyssU.JankladwigR.LehmannH. (1979). Formation and ultrastructure of feeding tubes produced by Trichodorid nematodes. Nematologica 25385-390.

Figures

  • View in gallery

    The phylum Nematoda. Schematic representation of small subunit ribosomal RNA phylogeny of nematodes reproduced with permission from Jones et al. (2013). The most recent analysis of 1200 species has subdivided the Dorylaimia, Enoplia and Chromadoria into 12 clades (van Megen et al., 2009). Various feeding modes are indicated by small icons. Representatives of each clade containing plant-parasitic nematodes are shown with images. In each of these clades the stylet is hypothesised to have arisen independently. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Feeding tubes of plant parasitic nematodes. A: Feeding tubes (FT) of the Clade 1 plant parasitic nematode Trichodorus similis appear to bridge the cell wall (CW) and disrupt the plasmalemma (Pl) (modified from Wyss et al. (1979)). Congealed cytoplasm can be seen where the feeding plug (P) contacts the host cell cytoplasm; B-D: Feeding tubes of Clade 12 plant parasites form inside the host cell cytoplasm, at the end of the stomatostyle (St) orifice (arrow), and contact the plasma membrane (PM) exemplified by Rotylenchulus reniformis (B modified from Rebois (1980)). Within the Clade 12 plant parasites, two morphologically distinct feeding tubes exist as seen from cross sections: the electron dense mesh of the cyst nematode feeding tube (C), and the regular lattice structure of the root-knot nematode feeding tube (D). No cross sections are available for T. similis, although longitudinal sections do not indicate a regular lattice structure.

  • View in gallery

    Feeding plugs of plant-parasitic nematodes. A: The feeding plugs (P) of Trichodorus similis form inside the host cell adjacent to the cell wall, but attached to the feeding tube (FT) (Wyss et al., 1979); B: The feeding peg/plug (FP) of reniform nematodes forms around the stomatostyle inside the host cell and is difficult to distinguish from cell wall material; C: Cyst nematode feeding plugs (P) appear to be contiguous with the amphidial canal (AC), bridge the cell wall, and encase the stomatostyle. Feeding plugs have not been described for false root-knot or root-knot nematodes. Images modified from Wyss et al. (1979), Rebois (1980) and Endo (1978).

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 66 66 22
Full Text Views 190 190 73
PDF Downloads 9 9 0
EPUB Downloads 0 0 0