Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene on Meloidogyne incognita

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Root-knot nematodes are the most economically important group of plant-parasitic nematodes. In the present study, functional validation using in vitro RNAi was carried out on Meloidogyne incognita with two FMRFamide-like peptide genes, flp-14 and flp-18, and a subventral pharyngeal gland specific gene, 16D10. It was found that RNAi silencing of each gene reduced the attraction of M. incognita at different time intervals both in combination and individually. Silencing of the genes reduced nematode infection by 23-30% and development as indicated by a reduction in the number of females by 26-62%. Reproduction was decreased by 27-73% and fecundity was decreased by 19-51%. In situ hybridisation revealed the expression of flp-18 in cells associated with the ventral and retro vesicular ganglia of the central nervous system. qRT-PCR supported the correlation between phenotypic effects of silencing with that of transcript quantification.

Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene on Meloidogyne incognita

in Nematology

Sections

References

AbadP.GouzyJ.AuryJ.M.Castagnone-SerenoP.DanchinE.G.DeleuryE.Perfus-BarbeochL.AnthouardV.ArtiguenaveF.BlokV.C. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26909-915.

AlbertsonD.G.ThomsonJ.N. (1976). The pharynx of Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences 275299-325.

AtkinsonH.J.HarrisP.D. (1989). Changes in nematode antigens recognized by monoclonal antibodies during early infections of soyabeans with the cyst nematode Heterodera glycines. Parasitology 98479-487.

AtkinsonH.J.IsaacR.E.HarrisP.D.SharpeC.M. (1988). FMRFamide-like immunoreactivity within the nervous-system of the nematodes Panagrellus redivivus, Caenorhabditis elegans and Heterodera glycines. Journal of Zoology 216663-671.

AtkinsonL.E.StevensonM.McCoyC.J.MarksN.J.FlemingC.ZamanianM.DayT.A.KimberM.J.MauleA.G.MousleyA. (2013). flp-32 ligand/receptor silencing phenocopy faster plant-pathogenic nematodes. PLoS Pathology 9e1003169.

AveryL. (1993). Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. Journal of Experimental Biology 175283-297.

AveryL.HorvitzH.R. (1989). Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3473-485.

BakhetiaM.CharltonW.L.UrwinP.E.McPhersonM.J.AtkinsonH.J. (2005). RNA interference and plant parasitic nematodes. Trends in Plant Science 10362-367.

BakhetiaM.UrwinP.E.AtkinsonH.J. (2008). Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. International Journal for Parasitology 381589-1597.

ByrdD.W.KirkpatrickT.BarkerK.R. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15142-143.

CohenM.RealeV.OlofssonB.KnightsA.EvansP.De BonoM. (2009). Coordinated regulation of foraging and metabolism in C. elegans by RFamide neuropeptide signaling. Cell Metabolism 9375-385.

DalzellJ.J.McMasterS.JohnstonM.J.KerrR.FlemingC.C.MauleA.G. (2009). Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. International Journal for Parasitology 391503-1516.

DalzellJ.J.McMasterS.FlemingC.C.MauleA.G. (2010). Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. International Journal for Parasitology 4091-100.

EisenmannD.M. (2005). Wnt signaling (25 June 2005). WormBook. The C. elegans Research Community WormBook DOI:10.1895/wormbook.1.7.1 available online at http://www.wormbook.org.

FletcherJ.C.BrandU.RunningM.P.SimonR.MeyerowitzE.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 2831911-1914.

GrayJ.M.HillJ.J.BargmannC.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 1023184-3191.

HasegawaM.KishinoH.YanoT. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22160-174.

HuangG.AllenR.DavisE.L.BaumT.J.HusseyR.S. (2006a). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America 10314302-14306.

HuangG.DongR.AllenR.DavisE.L.BaumT.J.HusseyR.S. (2006b). A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Molecular Plant-Microbe Interactions 19463-470.

HussonS.J.ClynenE.BaggermanG.JanssenT.SchoofsL. (2006). Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. Journal of Neurochemistry 981999-2012.

JohnstonM.J.McVeighP.McMasterS.FlemingC.C.MauleA.G. (2010). FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. Journal of Helminthology 84253-265.

KimK.LiC. (2004). Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Journal of Comparative Neurology 475540-550.

KimberM.J.FlemingC.C.PriorA.JonesJ.T.HaltonD.W.MauleA.G. (2002). Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. International Journal for Parasitology 321095-1105.

KimberM.J.McKinneyS.McMasterS.DayT.A.FlemingC.C.MauleA.G. (2007). flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB Journal 211233-1243.

KollerE.ProppS.MurrayH.LimaW.BhatB.PrakashT.P.AllersonC.R.SwayzeE.E.MarcussonE.G.DeanN.M. (2006). Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Research 344467-4476.

MagraneM.ConsortiumU. (2011). UniProt knowledgebase: a hub of integrated protein data. Database (Oxford) 2011bar009.

MauleA.G.MousleyA.MarksN.J.DayT.A.ThompsonD.P.GearyT.G.HaltonD.W. (2002). Neuropeptide signaling systems – potential drug targets for parasite and pest control. Current Topics in Medicinal Chemistry 2733-758.

McVeighP.GearyT.G.MarksN.J.MauleA.G. (2006). The FLP-side of nematodes. Trends in Parasitology 22385-396.

MinK.KangJ.LeeJ. (2010). A modified feeding RNAi method for simultaneous knock-down of more than one gene in Caenorhabditis elegans. Biotechniques 48229-232.

NelsonL.S.RosoffM.L.LiC. (1998). Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 2811686-1690.

NiuJ.H.JianH.XuJ.M.ChenC.D.GuoQ.X.LiuQ.GuoY.D. (2012). RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success. European Journal of Plant Pathology 134131-144.

PapaioannouS.MarsdenD.FranksC.J.WalkerR.J.Holden-DyeL. (2005). Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. Journal of Neurobiology 65304-319.

PapoluP.K.GantasalaN.P.KamarajuD.BanakarP.SreevathsaR.RaoU. (2013). Utility of host delivered RNAi of two FMRFamide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS ONE 8e80603.

RaoU.TyagiN.SharmaA.KamarajuD.BanakarP.RaoS.B. (2012). Soil less medium for culturing and multiplication of root knot and cyst nematodes for basic and applied studies. Annals of Plant Protection Science 21148-153.

RogersC.RealeV.KimK.ChatwinH.LiC.EvansP.De BonoM. (2003). Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neuroscience 61178-1185.

SasserJ.N. (1980). Root-knot nematodes: a global menace to crop production. Plant Disease 6434-41.

TrudgillD.L.BlokV.C. (2001). Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology 3953-77.

TsalikE.L.HobertO. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology 56178-197.

UrwinP.E.LilleyC.J.AtkinsonH.J. (2002). Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions 15747-752.

WakabayashiT.KitagawaI.ShingaiR. (2004). Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neuroscience Research 50103-111.

WhiteJ.G.SouthgateE.ThomsonJ.N.BrennerS. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences 3141-340.

Figures

  • View in gallery

    Multiple sequence alignment of flp-18 showing similarity among plant-parasitic (Meloidogyne chitwoodi, M. javanica, M. hapla, M. incognita), animal-parasitic (Ascaris suum) and free-living (Caenorhabditis elegans) nematodes.

  • View in gallery

    Phylogenetic tree showing the relationship of flp-18 sequence among Meloidogyne spp., Ascaris suum and Caenorhabditis elegans. Numbers in the figure indicate distance.

  • View in gallery

    Multiple sequence alignment of 16D10. The signal peptide is marked in blue, CLE3 domain marked in red. MEJA: Meloidogyne javanica; MELIC: M. incognita; MELHA: M. hapla; MELAR: M. arenaria; HETGL: Heterodera glycines. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    Images showing in situ hybridisation of digoxigenin-labelled DNA probes to the flp-18 gene in second-stage juveniles of Meloidogyne incognita. A, C: No colour was detected in the nerve ring with sense strand probes; B, D: Nematode nerve ring region showing flp-18 gene expression in vesicular and retro-vesicular ganglion of the nervous system.

  • View in gallery

    Effect of gene silencing on the attraction of second-stage juveniles of Meloidogyne incognita towards host tomato roots in Pluronic gel assays after 2, 4, 8, 24 and 72 h. Bars = standard error. Duncan’s multiple range test (P<0.01) was used to determine significant differences indicated by different lower case letters. GFP = green fluorescent protein.

  • View in gallery

    Effect of gene silencing on the penetration of second-stage juveniles of Meloidogyne incognita into host tomato roots in Pluronic gel assays. Bars = standard error. Duncan’s multiple range test (P<0.01) was used to determine significant differences indicated by different lower case letters. GFP = green fluorescent protein.

  • View in gallery

    Quantitative real time PCR to find the mRNA levels of target gene silenced in second-stage juveniles of Meloidogyne incognita. A: Single silenced nematodes; B: Silenced with combination of three genes simultaneously; C: Silenced with different combination of two genes at a time. Cytochrome c oxidase was used as reference gene and fold change was calculated by using the 2ΔΔCT method. The fold change values were transformed to personate with percentage values. Error bars = ±SD among the biological replicates; ∗∗ P<0.01. GFP = green fluorescent protein.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 10
Full Text Views 15 15 15
PDF Downloads 2 2 2
EPUB Downloads 0 0 0