Development and validation of SSR markers for the plant-parasitic nematode Subanguina moxae using genome assembly of Illumina pair-end reads

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Subanguina moxae, belonging to the subfamily Anguininae, is an obligate parasite of Artemisia plants, which are widely used as cooking herbs and in traditional medicine in East Asia. Because the nematode is distributed throughout East Russia and East Asia, there is concern about the potential for significant damage to commercial farming; however, details about its biology remain unclear. To investigate the genetic diversity of S. moxae, we developed 2243 simple sequence repeat (SSR) markers using Illumina short reads of the genomic DNA. We validated 100 randomly selected markers indicating their robustness and examined polymorphisms among nematode populations sampled from four different locations in Japan. These SSR markers will be a useful tool for understanding the population structure and transmission patterns of this parasitic nematode.

Development and validation of SSR markers for the plant-parasitic nematode Subanguina moxae using genome assembly of Illumina pair-end reads

in Nematology

Sections

References

AltschulS.F.GishW.MillerW.MyersE.W.LipmanD.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215403-410.

AriasR.S.StetinaS.R.TonosJ.L.SchefflerJ.A.SchefflerB.E. (2009). Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations. Journal of Nematology 41146-156.

BlacketM.RobinC.GoodR.LeeS.MillerA. (2012). Universal primers for fluorescent labelling of PCR fragments – an efficient and cost effective approach to genotyping by fluorescence. Molecular Ecology Resources 12456-463.

BlaxterM.L.De LeyP.GareyJ.R.LiuL.X.ScheldemanP.VierstraeteA.VanfleterenJ.R.MackeyL.Y.DorrisM.FrisseL.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 39271-75.

Castagnone-SerenoP.DanchinE.DeleuryE.GuillemaudT.MalausaT.AbadP. (2010). Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 11598.

ChoiY.E.LoofP.A. (1973). Redescription of Anguina moxae Yokoo & Choi, 1968 (Tylenchina). Nematologica 19285-292.

DaigoK.MakiharaH.OguraN. (2007). Subanguina moxae isolated from the leaf gall of the common mugwort Artemisia princeps in Japan. Meiji Japan Bulletin of the School of Agriculture Meiji University Tokyo.

DaigoK.TakeuchiT.KikuchiT.OguraN. (2014). The nucleotide sequence analysis of ITS1-5.8SrDNA-ITS2 region of Subanguina moxae collected in Japan. Nematological Research 4449-53.

EroshenkoA.S.VolkovaT.V. (2005). The plant nematodes of Russian Far East. Orders Tylenchida and Aphelenchida. Vladivostok, USSRDalnauka.

JarneP.LagodaP.J. (1996). Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution 11424-429.

LiW.GodzikA. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 221658-1659.

MucciarelliM.MaffeiM. (2002). Introduction to the genus. In: WrightC. (Ed.). Artemisia. London, UKTaylor and Francis pp.  1-50.

ParraG.BradnamK.KorfI. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 231061-1067.

PeakallR.SmouseP.E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6288-295.

PlantardO.PicardD.ValetteS.ScurrahM.GrenierE.MugniéryD. (2008). Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Molecular Ecology 172208-2218.

PowellW.MachrayG.C.ProvanJ. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1215-222.

RozenS.SkaletskyH. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology 132365-386.

SiddiqiM.R. (2000). Tylenchida: parasites of plants and insects. Wallingford, UKCAB International.

SlaterG.BirneyE. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 631.

SubbotinS.A.KrallE.L.RileyI.T.ChizhovV.N.StaelensA.De LooseM.MoensM. (2004). Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from Internal Transcribed Spacer sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 30226-235.

UenoS.MoriguchiY.UchiyamaK.Ujino-IharaT.FutamuraN.SakuraiT.ShinoharaK.TsumuraY. (2012). A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13136.

VallesJ.McArthurE.D. (2001). Artemisia systematics and phylogeny: cytogenetic and molecular insights. In: McArthur E.D. & Fairbanks D.J. (Eds). Shrubland ecosystem genetics and biodiversity. Provo UT USA Conference proceedings June 13-15 2000 pp. 67-74.

van MegenH.van den ElsenS.HoltermanM.KarssenG.MooymanP.BongersT.HolovachovO.BakkerJ.HelderJ. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11927-950.

YaoR.HuX.XueJ. (2012). First report of Subanguina moxae infecting mugwort in Yunnan, China. Plant Disease 961232.

YokooT.ChoiY.E. (1968). On a new species of shoot gall nematode (Tylenchidae: Anguina) found from the galls on the leaves of Moxa (Artemisia saiatica Nakai). Bulletin of the Faculty of Agriculture of Saga University 261-7.

ZiminA.V.MarcaisG.PuiuD.RobertsM.SalzbergS.L.YorkeJ.A. (2013). The MaSuRCA genome assembler. Bioinformatics 292669-2677.

Figures

  • View in gallery

    Distribution of Subanguina moxae in Japan.

  • View in gallery

    Distribution of di- and tri-nucleotide SSR motifs in the Subanguina moxae assembly before (All) and after (Filtered) filtering.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 28 28 8
Full Text Views 120 120 70
PDF Downloads 5 5 2
EPUB Downloads 0 0 0