To elucidate the genetic differentiation of the host populations of Heterodera glycines, 348 individuals from 13 populations of three host plants (Nicotiana tabacum, Glycine max and Rehmannia glutinosa) in north China were genotyped using eight microsatellite loci. A significant departure from Hardy-Weinberg equilibrium (Fis) was found in all populations. BOTTLENECK results showed that only three populations (ZT, CR, and MR) may have experienced a genetic bottleneck. The pairwise FST values among the three host populations ranged from 0.0503 to 0.2867. There was no significant relationship between the genetic distance and geographical distance. STRUCTURE analyses suggest that R. glutinosa might have important influence on the genetic differentiation of H. glycines in north China. Our study demonstrates that H. glycines is an inbred species that is highly genetic differentiated.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Barrett L.G., Thrall P.H., Burdon J.J., Linde C.C. (2008). Life history determines genetic structure and evolutionary potential of host-parasite interaction. Trends in Ecology & Evolution 23, 678-685.
Chen C., Li C. (1981). [ On the infestion of Rehmannia on soybean cyst nematode (Heterodera glycines Ichinohe).] Acta Phytopathologica Sinica 11, 37-44.
Chen M.H., Dorn S. (2010). Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bulletin of Entomological Research 100, 75-85.
Cheng Z.C., Zhao H.H., Li J.L., Zhang C.S., Wang F.L. (2012). [ Identification of tobacco-parasitizing cyst nematode and intrapopulation rDNA-ITS-RFLP analysis in Shandong Province.] Acta Phytopathologica Sinica 42, 387-395.
Chitwood D.J. (2003). Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Management Science 59, 748-753.
Cornuet J.M., Luikart G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001-2014.
Cristescu R., Sherwin W.B., Handasyde K., Cahill V., Cooper D.W. (2010). Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conservation Genetics 11, 1043-1049.
De Luca F., Reyes A., Veronico P., Di Vito M., Lamberti F., De Giorgi C. (2002). Characterization of the (GAAA) microsatellite region in the plant parasitic nematode Meloidogyne artiellia. Gene 293, 191-198.
Derycke S., Backeljau T., Moens T. (2013). Dispersal and gene flow in free-living marine nematodes. Frontiers in Zoology 10, 1-12.
Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620.
Franks S.J., Pratt P.D., Tsutsui N.D. (2010). The genetic consequences of a demographic bottleneck in an introduced biological control insect. Conservation Genetics 12, 201-211.
Jónsdóttir Ó.D.B., Danielsdóttir A.K., Naevdal G. (2001). Genetic differentiation among Atlantic cod (Gadus morhua L.) in Icelandic waters: temporal stability. ICES Journal of Marine Science 58, 114-122.
Kalinowski S.T., Taper M.L. (2006). Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Biology 7, 991-995.
Kaplan M., Caswell-Chen E.P., Williamson V.M. (1999). Assessment of host-induced selection on three geographic isolates of Heterodera schachtii using RAPD and AFLP markers. Phytopathology 89, 68-73.
Lambert K., Bekal S. (2002). Introduction to plant-parasitic nematodes. The Plant Health Instructor, DOI:10.1094/PHI-I-2002-1218-01.
Leach M., Agudelo P., Lawton-Rauh A. (2012). Effect of crop rotations on Rotylenchulus reniformis population structure. Plant Disease 96, 24-29.
Lehman P.S. (1994). Dissemination of phytoparasitic nematodes. Nematology Circular No. 208. Gainesville, FL, USA, Florida Department of Agriculture and Consumer Services.
Liu X.Z., Li J.Q., Zhang D.S. (1997). History and status of soybean cyst nematode in China. International Journal of Nematology 7, 18-25.
Ou S., Peng D., Liu X., Li Y., Moens M. (2008). Identification of Heterodera glycines using PCR with sequence characterised amplified region (SCAR) primers. Nematology 10, 397-403.
Park C.J., Hara M., Lee J.H., Noh J.K., Kim H.C., Park J.W., Kim S.Y. (2012). Genetic population structure of the wild Pacific abalone (Haliotis discus) in Korea and Japan based on microsatellite DNA markers. Biochemical Systematics Ecology 44, 86-95.
Picard D., Plantard O. (2006). What constitutes a population for the plant parasitic nematode Globodera pallida in its native area (Peru)? International Journal for Parasitology 36, 115-122.
Picard D., Plantard O., Scurrah M., Mugniéry D. (2004). Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Molecular Ecology 13, 2899-2908.
Plantard O., Porte C. (2003). Isolation and characterization of microsatellite loci in the sugar beet cyst nematode Heterodera schachtii. Molecular Ecology Notes 3, 139-141.
Plantard O., Porte C. (2004). Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology 13, 33-41.
Plantard O., Picard D., Valette S., Scurrah M., Grenier E., Mugniéry D. (2008). Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Molecular Ecology 17, 2208-2218.
Pritchard J.K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
Raymond M., Rousset F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248-249.
Riggs R.D., Wrather J.A. (1992). Biology and management of the soybean cyst nematode. St Paul, MN, USA, APS Press.
Shi H., Zheng J. (2013). First report of soybean cyst nematode (Heterodera glycines) on tobacco in Henan, central China. Plant Disease 97, 852.
Shinya R., Takeuchi Y., Ichimura K., Takemoto S., Futai K. (2012). Establishment of a set of inbred strains of the pine wood nematode, Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae), and evidence of their varying levels of virulence. Applied Entomology and Zoology 47, 341-350.
Singh S.K., Hodda M., Ash G.J., Banks N.C. (2013). Plant-parasitic nematodes as invasive species: characteristics, uncertainty and biosecurity implications. Annals of Applied Biology 163, 323-350.
Slatkin M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457-462.
Subbotin S.A., Peng D., Moens M. (2001). A rapid method for the identification of the soybean cyst nematode Heterodera glycines using duplex PCR. Nematology 3, 365-371.
Thiéry M., Mugniéry D. (2000). Microsatellite loci in the phytoparasitic nematode Globodera. Genome 43, 160-165.
Townshend J.L. (1962). An examination of the efficiency of the Cobb decanting and sieving method. Nematologica 8, 293-300.
Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538.
Venkatesh R., Harrison S.K., Riedel R.M. (2000). Weed hosts of soybean cyst nematode (Heterodera glycines) in Ohio. Weed Technology 14, 156-160.
Wang H.M., Zhao H.H., Wang F.L. (2014a). [ Morphological variation of Heterodera glycines Ichinohe from different host and their adaptability to soybean.] Plant Protection 40, 106-111.
Wang H.M., Zhao H.H., Zhao C.Z., Chu D. (2014b). EST-SSR markers from Heterodera glycines Ichinohe. Russian Journal of Genetics 50, 1-4.
Weir B.S., Cockerham C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.
Wen Y.F., Uchiyama K., Han W.J., Ueno S., Xie W.D., Xu G.B., Tsumura Y. (2013). [ Null alleles in microsatellite markers.] Biodiversity Science 21, 117-126.
Xiao L.B., Tan Y.N., Sun Y., Zhao H.X., Wu G.Q., Bai L.X. (2013). Adaptability and physiological response to host plant species switching in Apolygus lucorum. China Agricultural Science 46, 4941-4949.
Yeh F.C., Yang R.C., Boyle T., Ye Z.H. (1997). POPGENE, the user-friendly shareware for population genetic analysis. Edmonton, Canada, Molecular Biology and Biotechnology Centre, University of Alberta.
Zhang R.X., Li M.X., Jia Z.P. (2008). Rehmannia glutinosa: review of botany, chemistry and pharmacology. Journal of Ethnopharmacology 117, 199-214.
Zheng J., Subbotin S.A., Waeyenberge L., Moens M. (2000). Molecular characterisation of Chinese Heterodera glycines and H. avenae populations based on RFLPs and sequences of rDNA-ITS regions. Russian Journal of Nematology 8, 109-113.
Zheng J., Zhang Y., Li X., Zhao L. (2009). First report of the soybean cyst nematode, Heterodera glycines, on soybean in Zhejiang, eastern China. Plant Disease 93, 319.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 422 | 108 | 10 |
Full Text Views | 211 | 9 | 0 |
PDF Views & Downloads | 47 | 16 | 0 |
To elucidate the genetic differentiation of the host populations of Heterodera glycines, 348 individuals from 13 populations of three host plants (Nicotiana tabacum, Glycine max and Rehmannia glutinosa) in north China were genotyped using eight microsatellite loci. A significant departure from Hardy-Weinberg equilibrium (Fis) was found in all populations. BOTTLENECK results showed that only three populations (ZT, CR, and MR) may have experienced a genetic bottleneck. The pairwise FST values among the three host populations ranged from 0.0503 to 0.2867. There was no significant relationship between the genetic distance and geographical distance. STRUCTURE analyses suggest that R. glutinosa might have important influence on the genetic differentiation of H. glycines in north China. Our study demonstrates that H. glycines is an inbred species that is highly genetic differentiated.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 422 | 108 | 10 |
Full Text Views | 211 | 9 | 0 |
PDF Views & Downloads | 47 | 16 | 0 |