Description of Rotylenchus urmiaensis n. sp. (Nematoda: Hoplolaimidae) from North-western Iran with a molecular phylogeny of the genus

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

A new bisexual species of Rotylenchus from North-western Iran is described and illustrated based on morphological, morphometric and molecular studies. Rotylenchus urmiaensis n. sp. is characterised by having a truncate lip region with irregular longitudinal striation, lateral field areolated only in pharynx region, stylet length 34-40 μm, vulva positioned at 53-61%, and female tail conoid-rounded to dorsally convex-conoid with 5-10 annuli. Rotylenchus urmiaensis n. sp. appears to be similar to R. striaticeps, from which it may be differentiated morphologically by a slightly shorter body length (870-1269 vs 1000-1723 μm), shorter stylet (34-40 vs 39-50 μm), female tail shape (conoid-rounded to dorsally convex-conoid vs rounded), frequency of males (rare vs common as abundant as females), shorter spicules (39-43 vs 41-50 μm) and phasmid position (varying from three annuli anterior or three annuli posterior to anus vs at level to seven annuli anterior to anus), and molecularly. The results of phylogenetic analyses based on sequences of D2-D3 expansion region of 28S, ITS-rDNA, 18S rDNA, and the partial cytochrome c oxidase subunit 1 (coxI) mtDNA, confirmed the species differentiation and the close molecular relationship between R. urmiaensis n. sp. and R. striaticeps.

Description of Rotylenchus urmiaensis n. sp. (Nematoda: Hoplolaimidae) from North-western Iran with a molecular phylogeny of the genus

in Nematology

Sections

References

AbolafiaJ.LiébanasG.Peña-SantiagoR. (2002). Nematodes of the order Rhabditida from Andalucía Oriental, Spain. The subgenus Pseudacrobeles Steiner, 1938, with description of a new species. Journal of Nematode Morphology and Systematics 4137-154.

AliramajiF.PourjamE.Álvarez-OrtegaS.PedramM.AtighiM.R. (2015). Rotylenchus dalikhaniensis n. sp. (Nematoda: Hoplolaimidae), a monosexual species recovered from the rhizosphere of Ruscus hyrcanus Woronow in Mazandaran province, northern Iran. Nematology 1767-77.

AtighiM.R.PourjamE.PedramM.Cantalapiedra-NavarreteC.Palomares-RiusJ.E.CastilloP. (2011). Molecular and morphological characterisations of two new Rotylenchus species from Iran. Nematology 13951-964.

AtighiM.R.PourjamE.GhaemiR.PedramM.LiébanasG.Cantalapiedra-NavarreteC.CastilloP.Palomares-RiusJ.E. (2014). Description of Rotylenchus arasbaranensis n. sp. from Iran with discussion on the taxonomic status of Plesiorotylenchus Vovlas, Castillo & Lamberti, 1993 (Nematoda: Hoplolaimidae). Nematology 161019-1045.

BaydulovaL.A. (1984). [Distribution of ectoparasitic nematodes from the family Hoplolaimidae in western Kazakhstan.] Zhivotnyi mir Kazakhstan i problemy ego okhrany pp. 15-16.

Cantalapiedra-NavarreteC.LiébanasG.Archidona-YusteA.Palomares-RiusJ.E.CastilloP. (2012). Molecular and morphological characterisation of Rotylenchus vitis n. sp. infecting grapevine in southern Spain. Nematology 14235-247.

Cantalapiedra-NavarreteC.Navas-CortésJ.A.LiébanasG.VovlasN.SubbotinS.A.Palomares-RiusJ.E.CastilloP. (2013). Comparative molecular and morphological characterisations in the genus Rotylenchus: Rotylenchus paravitis n. sp., an example of cryptic speciation. Zoologischer Anzeiger 252246-268.

CastilloP.VovlasN. (2005). Bionomics and identification of the genus Rotylenchus (Nematoda: Hoplolaimidae). Nematology Monographs and Perspectives 3 (Series editors: HuntD.J.PerryR.N.). Leiden, The NetherlandsBrill.

CastilloP.VovlasN.Gómez BarcinaA.LambertiF. (1994). The plant parasitic nematode Rotylenchus (a monograph). Nematologia Mediterranea 21(Suppl.) 1-200.

CastilloP.VovlasN.SubbotinS.A.TroccoliA. (2003). A new root-knot nematode, Meloidogyne baetica n. sp. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology 931093-1102.

DarribaD.TaboadaG.L.DoalloR.PosadaD. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9772.

De GrisseA.T. (1969). Redescription ou modifications de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 34351-369.

DeryckeS.VanaverbekeJ.RigauxA.BackeljauT.MoensT. (2010). Exploring the use of cytochrome oxidase c subunit 1 (coxI) for DNA barcoding of free-living marine nematodes. PLoS ONE 5(10) e13716. DOI:10.1371/journal.pone.0013716.

ElekciogluI.H. (2000). Diagnostic characteristics of Plesiorotylenchus striaticeps Vovlas, Castillo & Lamberti, 1993 (Nematoda: Tylenchida) from east Mediterranean region and central Anatolia. Nematologia Mediterranea 28207-212.

FerrazS. (1980). Description of Rotylenchus nexus n. sp. (Nematoda: Hoplolaimidae) from Brazil, with some observations on the nematode genus Calvatylus. Systematic Parasitology 221-24.

FilipjevI.N. (1934). The classification of free-living nematodes and their relations to parasitic nematodes. Smithsonian Miscellaneous Collections 891-63.

FilipjevI.N. (1936). On the classification of the Tylenchinae. Proceedings of the Helminthological Society of Washington 380-82.

HallT.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 4195-98.

HoltermanM.van der WurffA.van den ElsenS.van MegenH. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 131792-1800.

HugallA.MoritzC.StantonJ.WolstenholmeD.R. (1994). Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne). Genetics 136903-912.

KatohK.MisawaK.KumaK.MiyataT. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Resources 303059-3066.

NunnG.B. (1992). Nematode molecular evolution. Ph.D. Thesis University of Nottingham Nottingham UK.

PageR.D.M. (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12357-358.

RonquistF.HuelsenbeckJ.P. (2003). MrBAYES3: Bayesian phylogenetic inference under mixed models. Bioinformatics 191572-1574.

Scotto La MassèseC.GermaniG. (2000). Description de quatre nouvelles espèces et de quatre populations de Rotylenchus (Nematoda: Hoplolaimidae). Proposition d’une clé tabulaire. Nematology 2699-718.

SubbotinS.A.SturhanD.VovlasN.CastilloP.Tanyi TambeJ.MoensM.BaldwinJ.G. (2007). Application of the secondary structure model of rRNA for phylogeny: D2-D3 expansion segments of the LSU gene of plant-parasitic nematodes from the family Hoplolaimidae Filipjev, 1934. Molecular Phylogenetics and Evolution 43881-890.

SwoffordD.L. (2003). PAUP: phylogenetic analysis using parsimony (and other methods) version 4.0b 10. Sunderland, MA, USASinauer Associates.

TalezariA.PourjamE.KheiriA.LiébanasG.AliramajiF.PedramM.RezaeeS.AtighiM.R. (2015). Rotylenchus castilloi n. sp. (Nematoda: Hoplolaimidae), a new species with long stylet from northern Iran. Zootaxa 393188-100.

VovlasN.CastilloP.LambertiF. (1993). A new genus of Hoplolaiminae: Plesiorotylenchus striaticeps n. gen., n. sp. (Nematoda: Tylenchida). Nematologica 391-11.

VovlasN.SubbotinS.A.TroccoliA.LiébanasG.CastilloP. (2008). Molecular phylogeny of the genus Rotylenchus (Nematoda, Tylenchida) and description of a new species. Zoologica Scripta 37521-537.

WhiteheadA.G.HemmingJ.R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology 5525-38.

ZancadaM.C. (1985). Rotylenchus magnus sp. n. and R. mesorobustus sp. n. (Nematoda: Tylenchida) from Spain. Nematologica 31134-142.

Figures

  • View in gallery

    Line drawings of Rotylenchus urmiaensis n. sp. A: Entire male; B: Female anterior region; C: Male lip region; D: Female anterior region showing lateral field areolation; E: Female anterior region; F: Entire female; G: Female lip region; H: Female mid-body showing vulva and reproductive system; I: Male tail region; J-L: Female tail region; M, N: Spicule and gubernaculum.

  • View in gallery

    Light micrographs of Rotylenchus urmiaensis n. sp. A: Male and female entire body; B-D: Female anterior region; E: Vulval region; F, G: Details of pharyngeal glands; H-J: Female tail region; K-M: Female tail region showing variation in phasmid position; N: Male tail region. Abbreviations: DGO = dorsal gland orifice; ep = excretory pore; epi = epiptygma; ph = phasmid. (Scale bars = 20 μm, except for A = 200 μm.)

  • View in gallery

    Scanning electron microscope photographs of Rotylenchus urmiaensis n. sp. A, B: Lateral view of female lip region showing detail and beginning of lateral fields; C-F: Lip region; G: Female mid-body showing vulva and lateral field; H: Vulval region showing epiptygma; I: Non-areolated lateral fields at mid-body; J-L: Female tail region showing phasmid and anus; M: Non-areolated lateral fields at tail region. Abbreviations: a = anus; aa = amphidial aperture; oa = oral aperture; od = oral disc; epi = epiptygma; ph = phasmid; V = vulva. (Scale bars A, B, G = 10 μm; C-F, H, I, M = 2 μm; J-L = 5 μm.)

  • View in gallery

    The 50% majority rule consensus trees from Bayesian analysis generated from the D2-D3 of 28S rRNA gene dataset with the TVM + I + G model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in ML analysis. Newly obtained sequences are in bold letters.

  • View in gallery

    The 50% majority rule consensus trees from Bayesian analysis generated from the ITS-rRNA gene dataset with TVM + I + G model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in ML analysis. Newly obtained sequences are in bold.

  • View in gallery

    The 50% majority rule consensus trees from Bayesian analysis generated from the partial 18S rRNA gene dataset with TrN + I + G model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in ML analysis. Newly obtained sequences are in bold.

  • View in gallery

    The 50% majority rule consensus trees from Bayesian analysis generated from the partial coxI mtDNA gene dataset with TVM + I + G model. Posterior probabilities more than 65% are given for appropriate clades; bootstrap values greater than 50% are given on appropriate clades in ML analysis. Newly obtained sequences are in bold.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 10
Full Text Views 4 4 4
PDF Downloads 0 0 0
EPUB Downloads 0 0 0