The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein

In: Nematology
View More View Less
  • 1 Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA

Login via Institution

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

The root-knot nematode Meloidogyne chitwoodi secretes effector proteins into the cells of host plants to manipulate plant-derived processes in order to achieve successful parasitism. Mc1194 is a M. chitwoodi effector that is highly expressed in pre-parasitic second-stage juvenile nematodes. Yeast two-hybrid assays revealed Mc1194 specifically interacts with a papain-like cysteine protease (PLCP), RD21A in Arabidopsis thaliana. Mc1194 interacts with both the protease and granulin domains of RD21A. PLCPs are targeted by effectors secreted by bacterial, fungal and oomycete pathogens and the hypersusceptibility of rd21-1 mutants to M. chitwoodi indicates RD21A plays a role in plant-parasitic nematode infection.

  • Barcala M., Fenoll C., Escobar C. (2012). Laser microdissection of cells and isolation of high-quality RNA after cryosectioning. Methods in Molecular Biology 883, 87-95.

    • Search Google Scholar
    • Export Citation
  • Bartlem D.G., Jones M.G.K., Hammes U.Z. (2013). Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. Journal of Experimental Botany 65, 1789-1798.

    • Search Google Scholar
    • Export Citation
  • Bateman A., Bennett H.P.J. (2009). The granulin gene family: from cancer to dementia. BioEssays 31, 1245-1254.

  • Bebber D.P., Holme S.T., Gurr S.J. (2014). The global spread of crop pests and pathogens. Global Ecology Biogeography 23, 1398-1407.

  • Beers E.P., Jones A.M., Dickerman A.W. (2004). The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65, 43-58.

    • Search Google Scholar
    • Export Citation
  • Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783-795.

    • Search Google Scholar
    • Export Citation
  • Bernoux M., Timmers T., Jauneau A., Briere C., De Wit P.J., Marco Y., Deslandes L. (2008). RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20, 2252-2264.

    • Search Google Scholar
    • Export Citation
  • Bhandari V., Palfree R.G., Bateman A. (1992). Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proceedings of the National Academy of Sciences of the United States of America 89, 1715-1719.

    • Search Google Scholar
    • Export Citation
  • Blok V.C., Jones J.T., Phillips M.S., Trudgill D.L. (2008). Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays 30, 249-259.

    • Search Google Scholar
    • Export Citation
  • Bozkurt T.O., Schornack S., Win J., Shindo T., Iiyas M., Oliva R., Cano L.M., Jones A.M., Huitema E., van der Hoorn R.A. (2011). Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America 108, 20832-20837.

    • Search Google Scholar
    • Export Citation
  • Brigneti G., Voinnet O., Li W.X., Ji L.H., Ding S.W., Baulcombe D.C. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO Journal 17, 6739-6746.

    • Search Google Scholar
    • Export Citation
  • Carter C., Pan S., Zouhar J., Avila E.L., Girke T., Raikhel N.V. (2004). The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16, 3285-3303.

    • Search Google Scholar
    • Export Citation
  • Davis E.L., Hussey R.S., Mitchum M.G., Baum T.J. (2008). Parasitism proteins in nematode-plant interactions. Current Opinion in Plant Biology 11, 360-366.

    • Search Google Scholar
    • Export Citation
  • de Almeida-Engler J., Engler G., Gheysen G. (2011). Unravelling the plant cell cycle in nematode feeding sites. In: Jones J.T., Gheysen G., Fenoll C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  349-368.

    • Search Google Scholar
    • Export Citation
  • Dinh P.T.Y., Brown C.R., Elling A.A. (2014). RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology 104, 1098-1106.

    • Search Google Scholar
    • Export Citation
  • Doyle E.A., Lambert K.N. (2002). Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Molecular Plant-Microbe Interactions 15, 549-556.

    • Search Google Scholar
    • Export Citation
  • Elling A.A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology 103, 1092-1102.

  • Elling A.A., Jones J.T. (2014). Functional characterization of nematode effectors in plants. Methods in Molecular Biology 1127, 113-124.

  • Gheysen G., Mitchum M.G. (2011). How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology 14, 415-421.

    • Search Google Scholar
    • Export Citation
  • Gu C., Shabab M., Strasser R., Wolters P.J., Shindo T., Niemer M., Kaschani F., Mach L., van der Hoorn R.A. (2012). Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana. PLoS ONE 7, e32422.

    • Search Google Scholar
    • Export Citation
  • Haegeman A., Mantelin S., Jones J.T., Gheysen G. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 492, 19-31.

  • Hayashi Y., Yamada K., Shimada T., Matsushima R., Nishizawa M., Hara-Nishimura I. (2001). A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiology 42, 894-899.

    • Search Google Scholar
    • Export Citation
  • Hewezi T., Baum T.J. (2013). Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions 26, 9-16.

    • Search Google Scholar
    • Export Citation
  • Hofmann J., Grundler F. (2007). Identification of reference genes for qRT-PCR studies of gene expression in giant cells and syncytia induced in Arabidopsis thaliana by Meloidogyne incognita and Heterodera schachtii. Nematology 9, 317-323.

    • Search Google Scholar
    • Export Citation
  • Hussey R.S. (1989). Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology 27, 123-141.

  • Hussey R.S., Barker K.R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reports 57, 1025-1028.

    • Search Google Scholar
    • Export Citation
  • Jaouannet M., Perfus-Barbeoch L., Deleury E., Magliano M., Engler G., Vieira P., Danchin E.G., da Rocha M., Coquillard P., Abad P. (2012). A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. New Phytologist 194, 924-931.

    • Search Google Scholar
    • Export Citation
  • Jones M.G.K., Goto D.B. (2011). Root-knot nematodes and giant cells. In: Jones J., Gheysen G., Fenoll C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp.  83-102.

    • Search Google Scholar
    • Export Citation
  • Kaschani F., Shabab M., Bozkurt T., Shindo T., Schornack S., Gu C., Iiyas M., Win J., Kamoun S., van der Hoorn R.A. (2010). An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiology 154, 1794-1804.

    • Search Google Scholar
    • Export Citation
  • Krüger J., Thomas C.M., Golstein C., Dixon M.S., Smoker M., Tang S., Mulder L., Jones J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.

    • Search Google Scholar
    • Export Citation
  • Kyndt T., Vieira P., Gheysen G., de Almeida-Engler J. (2013). Nematode feeding sites: unique organs in plant roots. Planta 238, 807-818.

  • Lampl N., Alkan N., Davydov O., Fluhr R. (2013). Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant Journal 74, 498-510.

    • Search Google Scholar
    • Export Citation
  • Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 Δ Δ CT method. Methods 25, 402-408.

    • Search Google Scholar
    • Export Citation
  • Lozano-Torres J., Wilbers R.H.P., Gawronski P., Boshoven J.C., Finkers-Tomczak A., Cordewener J.H.G., America A.H.P., Overmars H.A., van’t Klooster J.W., Baranowski L. (2012). Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences of the United States of America 109, 10119-10124.

    • Search Google Scholar
    • Export Citation
  • Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M.K., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lanczycki C.J. (2013). CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Research 41, D348-D352.

    • Search Google Scholar
    • Export Citation
  • Martin K., Kopperud K., Chakrabarty R., Banerjee R., Brooks R., Goodin M.M. (2009). Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant Journal 59, 150-162.

    • Search Google Scholar
    • Export Citation
  • Mitchum M.G., Hussey R.S., Baum T.J., Wang X., Elling A.A., Wubben M., Davis E.L. (2013). Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199, 879-894.

    • Search Google Scholar
    • Export Citation
  • Mukhtar M.S., Carvunis A.R., Dreze M., Epple P., Steinbrenner J., Moore J., Tasan M., Galli M., Hao T., Nishimura M.T. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333, 596-601.

    • Search Google Scholar
    • Export Citation
  • Ondzighi C.A., Christopher D.A., Cho E.J., Chang S.C., Staehelin L.A. (2008). Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20, 2205-2220.

    • Search Google Scholar
    • Export Citation
  • Rooney H.C.E., van’t Klooster J.W., van der Hoorn R.A.L., Joosten M.H., Jones J.D., de Wit P.J. (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783-1786.

    • Search Google Scholar
    • Export Citation
  • Roze E., Hanse B., Mitreva M., Vanholme B., Bakker J., Smant G. (2008). Mining the secretome of the root-knot nematode Meloidogyne chitwoodi for candidate parasitism genes. Molecular Plant Pathology 9, 1-10.

    • Search Google Scholar
    • Export Citation
  • Shabab M., Shindo T., Gu C., Kaschani F., Pansuriya T., Chintha R., Harzen A., Colby T., Kamoun S., van der Hoorn R.A. (2008). Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20, 1169-1183.

    • Search Google Scholar
    • Export Citation
  • Shindo T., van der Hoorn R.A.L. (2008). Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Molecular Plant Pathology 9, 119-125.

    • Search Google Scholar
    • Export Citation
  • Shindo T., Misas-Villamil J.C., Hörger A.C., Song J., van der Hoorn R.A. (2012). A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS ONE 7, e29317.

    • Search Google Scholar
    • Export Citation
  • Song J., Win J., Tian M., Schornack S., Kaschani F., Iiyas M., van der Hoorn R.A., Kamoun S. (2009). Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America 106, 1654-1659.

    • Search Google Scholar
    • Export Citation
  • Tian M., Win J., Song J., van der Hoorn R.A., van der Knaap E., Kamoun S. (2007). A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiology 143, 364-377.

    • Search Google Scholar
    • Export Citation
  • van der Linde K., Hemetsberger C., Kastner C., Kaschani F., van der Hoorn R.A., Kumlehn J., Doehlemann G. (2012). A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24, 1285-1300.

    • Search Google Scholar
    • Export Citation
  • van Esse H.P., van’t Klooster J.W., Bolton M.D., Yadeta K.A., van Baarlen P., Boeren S., Vervoort J., de Wit P.J., Thomma B.P. (2008). The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20, 1948-1963.

    • Search Google Scholar
    • Export Citation
  • Vieira P., Danchin E.G.J., Neveu C., Crozat C., Jaubert S., Hussey R.S., Engler G., Abad P., de Almeida-Engler J., Castagnone-Sereno P. (2011). The plant apoplasm is an important recipient compartment for nematode secreted proteins. Journal of Experimental Botany 62, 1241-1253.

    • Search Google Scholar
    • Export Citation
  • Wang J., Lee C., Replogle A., Joshi S., Korkin D., Hussey R., Baum T.J., Davis E.L., Wang X., Mitchum M.G. (2010). Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytologist 187, 1003-1017.

    • Search Google Scholar
    • Export Citation
  • Wang X., Meyers D., Yan Y., Baum T.J., Smant G., Hussey R., Davis E.L. (1999). In planta localization of a beta-1,4-endoglucanase secreted by Heterodera glycines. Molecular Plant-Microbe Interactions 12, 64-67.

    • Search Google Scholar
    • Export Citation
  • Weigel D., Glazebrook J. (2006). Transformation of agrobacterium using the freeze-thaw method. In: Cold Spring Harbor Protocols 2006, DOI:10.1101/pdb.prot4666.

    • Search Google Scholar
    • Export Citation
  • Yamada K., Matsushima R., Nishimura M., Hara-Nishimura I. (2001). A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiology 127, 1626-1634.

    • Search Google Scholar
    • Export Citation
  • Zhang B., Tremousaygue D., Denancé N., van Esse H.P., Horger A.C., Dabos P., Goffner D., Thomma B.P., van der Hoorn R.A., Tuominen H. (2014). PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. Plant Journal 79, 1009-1019.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 273 137 7
Full Text Views 230 25 0
PDF Downloads 22 15 0