Nematode colonisation of artificial water-filled tree holes

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Nematodes inhabiting artificial water-filled tree holes were monitored over 16 months by placing 300 plastic cups in four forest areas. For the first time we investigated the importance of forest soils for nematode dispersal and colonisation of tree holes. On average, 91% of the cups were settled by a total of 35 species (maximum 58 336 individuals 100 cm−2). They were dominated by the bacterial feeder Dolichorhabditis dolichura (32.4%) and the hyphal feeders Laimaphelenchus penardi (23.6%) and Laimaphelenchus sp. (13.4%); 84.4% had lengths < 0.75 mm and in only 6% of the water-filled tree holes were male nematodes found. None of the most common species was detected in the soils of the sampling sites. However, a meta-community analysis revealed a random turnover. The properties of the identified nematodes (small body size, anhydrobiosis, parthenogenesis) made them highly amenable to dispersal by wind and account for their rapid colonisation of a wide range of habitats.

Nematode colonisation of artificial water-filled tree holes

in Nematology



  • AlpheiJ. (1998). Differences in soil nematode community structure of beech forests: comparison between a mull and a moder soil. Applied Soil Ecology 99-15.

  • AndrássyI. (2005). Free-living nematodes of Hungary I (Nematoda errantia). Pedozoologica Hungarica No. 3 (Series editors: CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

  • AndrássyI. (2007). Free-living nematodes of Hungary II (Nematoda errantia). Pedozoologica Hungarica No. 4 (Series editors: CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

  • BassusW. (1962). Über die Vertikalverteilung und den Massenwechsel der Nematoden in Waldböden. Nematologica 7281-293.

  • BergtoldM.TraunspurgerW. (2005). Benthic production by micro-, meio-, and macrobenthos in the profundal zone of an oligotrophic lake. Journal of the North American Benthological Society 24321-329.

  • BradshawW.E.HolzapfelC.M. (1988). Drought and the organization of tree-hole mosquito communities. Oecologia 74507-514.

  • BrouardO.Le JeuneA.H.LeroyC.CereghinoR.RouxO.PelozueloL.DejeanA.CorbaraB.CarriasJ.F. (2011). Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS ONE 6e20129.

  • BrouardO.CéréghinoR.CorbaraB.LeroyC.PelozueloL.DejeanA.CarriasJ.F. (2012). Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57815-823.

  • BüttnerV. (1989). Untersuchungen zur Ökologie der Nematoden eines Kalkbuchenwaldes. Nematologica 35234-247.

  • CáceresC.E.SolukD.A. (2002). Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131402-408.

  • CarpenterS.R. (1982). Stemflow chemistry: effects on population dynamics of detritivorous mosquitoes in tree-hole ecosystems. Oecologia 531-6.

  • CarrollJ.J.ViglierchioD.R. (1980). On the transport of nematodes by the wind. Journal of Nematology 13476-483.

  • CottenieK. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 81175-1182.

  • CottenieK.MichelsE.NuyttenN.DeMeesterL. (2003). Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84991-1000.

  • DevetterM. (2004). Invertebrate fauna of treeholes in relation to some habitat conditions in southern Bohemia (Czech Republic). Acta Societatis Zoologicae Bohemicae 68161-168.

  • FinlayB.J. (2002). Global dispersal of free-living microbial eukaryote species. Science 2961061-1063.

  • FontanetoD.RicciC. (2004). Rotifera: Bdelloidea. In: YuleC.M.YongH.-S. (Eds). Freshwater invertebrates of the Malaysian Region. Kuala Lumpur, MalaysiaAkademi Sains Malaysia pp.  121-126.

  • FontanetoD.MeloneG.RicciC. (2005). Connectivity and nestedness of the meta-community structure of moss dwelling bdelloid rotifers along a stream. Hydrobiologia 542131-136.

  • FrankJ.H.LounibosL.P. (2009). Insects and allies associated with bromeliads: a review. Terrestrial Arthropod Reviews 1125-153.

  • FranklandP.F. (1986). The distribution of micro-organisms in air. Proceedings of the Royal Society of London 40509-526.

  • FrischD.CottenieK.BadosaA.GreenA.J.SiepielskiA. (2012). Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS ONE 7e40205.

  • GiereO. (2009). Meiobenthology: the microscopic motile fauna of aquatic sediments. Berlin, GermanySpringer.

  • HendriksenN.B. (1982). Anhydrobiosis in nematodes: studies on Plectus sp. In: LebrunP.AndréH.M.De MedtsA.Grégoire-WiboC.WauthyG. (Eds). New trends in soil biology. Louvain-la-Neurve, BelgiumDieu-Brichart pp.  387-394.

  • HoddaM.OcañaA.TraunspurgerW. (2006). Nematodes from extreme freshwater habitats. In: Eyualem-AbebeE.TraunspurgerW.AndrássyI. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UKCAB International pp.  179-210.

  • IncagnoneG.MarroneF.BaroneR.RobbaL.Naselli-FloresL. (2015). How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750103-123.

  • JenkinsB.KitchingR.L.PimmS.L. (1992). Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65249-255.

  • JenkinsD.G. (1995). Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313/31415-20.

  • JocqueM.FieldR. (2014). Aquatic invertebrate communities in tank bromeliads: how well do classic ecological patterns apply? Hydrobiologia 730153-166.

  • KitchingR.L. (1971). An ecological study of water-filled tree-holes and their position in the woodland ecosystem. Journal of Animal Ecology 40281-302.

  • KitchingR.L. (2000). Food webs and container habitats. The natural history and ecology of phytotelmata. Cambridge, UKCambridge University Press.

  • KneitelJ.M.MillerT.E. (2003). Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines. American Naturalist 162165-171.

  • KutikovaL.A. (2003). Bdelloid rotifers (Rotifera, Bdelloidea) as a component of soil and land biocenoses. Biology Bulletin 30271-274.

  • LeiboldM.A.MikkelsonG.M. (2002). Coherence, species turnover, and boundary clumping: elements of meta-communtity structure. Oikos 97237-250.

  • MaciáA.BradshawW.E. (2000). Seasonal availability of resources and habitat degradation for the western tree-hole mosquito, Aedes sierrensis. Oecologia 12555-65.

  • MaguireB.Jr (1963). The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecological Monographs 33161-185.

  • MichielsI.TraunspurgerW. (2004). A three-year study of seasonal dynamics of a zoobenthos community in a eutrophic lake. Nematology 6655-669.

  • MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9271-284.

  • MuschiolD.TraunspurgerW. (2009). Life at the extreme: meiofauna from three unexplored lakes in the caldera of the Cerro Azul volcano, Galápagos Islands, Ecuador. Aquatic Ecology 43235-248.

  • ParadiseC.J.BlueJ.D.BurkhartJ.Q.GoldbergJ.HarshawL.HawkinsK.D.KeganB.KrentzT.SmithL.VillalpandoS. (2008). Local and regional factors influence the structure of treehole metacommunities. BMC Ecology 81-16.

  • PimmS.L.KitchingR.L. (1987). The determinants of food chain lengths. Oikos 50301-307.

  • PoinarG.O.JaenikeJ.ShoemakerD.D. (1998). Howardula neocosmis sp. n. parasitizing North American drosophila (Diptera: Drosophilidae) with a listing of the species of Howardula Cobb, 1921 (Tylenchida: Allantonematidae). Fundamental and Applied Nematology 21547-552.

  • PresleyS.HigginsC.L.WilligM.R. (2010). A comprehensive framework for the evaluation of metacommunity structure. Oikos 119908-917.

  • Psychorn-WalcherH.GunholdP. (1957). Zur Kenntnis der Tiergemeinschaften in Moss und Flechtenrasen an Park- und Waldbäumen. Zeitschrift für Morphologie und Ökologie der Tiere 46342-354.

  • PtatscheckC.TraunspurgerW. (2014). The meiofauna of artificial water-filled tree holes: colonization and bottom-up effects. Aquatic Ecology 48285-295.

  • PtatscheckC.Kreuzinger-JanikB.PutzkiH.TraunspurgerW. (2015). Insights into the importance of nematode prey for chironomid larvae. Hydrobiologiain press DOI:10.1007/s10750-015-2246-9.

  • RundleS.D.RobertsonA.L.Schmid-ArayaJ.M. (Eds). (2002). Freshwater meiofauna: biology and ecology. Leiden, The NetherlandsBackhuys Publishers.

  • SchmidP.E.Schmid-ArayaJ.M. (1997). Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshwater Biology 3867-91.

  • Schmid-ArayaJ.M.SchmidP.E. (2000). Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44149-163.

  • SchmidlJ.SulzerP.KitchingR.L. (2008). The insect assemblage in water-filled tree-holes in a European temperate deciduous forest: community composition reflects structural, trophic and physicochemical factors. Hydrobiologia 598285-303.

  • SchroederF.PetersL.TraunspurgerW. (2012). Temporal variations in epilithic nematode assemblages in lakes of different productivities. Fundamental and Applied Limnology 181143-157.

  • SeinhorstJ.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 467-69.

  • SeinhorstJ.W. (1962). On the killing, fixation and transferring to glycerine of nematodes. Marine Ecology Progress Series 8195-202.

  • ShurinJ.B. (2000). Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 813074-3086.

  • SimonsW.R. (1973). Nematode survival in relation to soil moisture. Mededelingen Landbouwhogeschool Wageningen 731-85.

  • TraunspurgerW. (1997). Bathymetric, seasonal and vertical distribution of feeding-types of nematodes in an oligotrophic lake. Vie et Milieu 471-7.

  • TraunspurgerW. (2000). The biology and ecology of lotic nematodes. Freshwater Biology 4429-45.

  • TraunspurgerW.HössS.Witthöft-MühlmannA.WesselsM.GüdeH. (2012). Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental and Applied Limnology 180233-248.

  • TreonisA.M.WallD.H.VirginiaR.A. (2000). The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Functional Ecology 14460-467.

  • UrbanM.C.De MeesterL. (2009). Community monopolization: local adaption enhances priority effects in an evolving metacommunity. Proceedings of the Royal Society B: Biological Sciences 2764129-4138.

  • VanaverbekeJ.SoetaertK.E.R.VincxM. (2004). Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Marine Ecology Progress Series 273139-146.

  • VanschoenwinkelB.GielenS.SeamanM.BrendonckL. (2008). Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117125-134.

  • VargaL. (1928). Ein interessanter Biotop der Biocönose von Wasserorganismen. Biologisches Zentralblatt 48143-162.

  • YanoviakS.P. (2001). Container color and location affect macroinvertebrate community structure in artificial treeholes in Panama. Florida Entomologist 84265-271.

  • YanoviakS.P.FinckeO.M. (2005). Sampling methods for water-filled tree holes and their artificial analogues. In: LeatherS.R. (Ed.). Insect sampling in forest ecosystems. Malden, MA, USAWiley-Blackwell pp.  169-185.

  • YeatesG.W. (1972). Nematoda of a Danish beech forest. I. Methods and general analysis. Oikos 23178-189.

  • YeatesG.W.BongersT.DeGoedeR.G.M.FreckmanD.W.GeogievaS.S. (1993). Feeding-habits in soil nematode families and genera – an outline for soil ecologists. Journal of Nematology 25315-331.


  • View in gallery

    The 35 nematode species distributed across the four forest sites: K-O (Kühnauerheide, old forest), K-Y (Kühnauer Heide, young forest), O-O (Oranienbaumer Heide, old forest) and O-Y (Oranienbaumer Heide, young forest). The matrix was ordered by reciprocal averaging. The most common species (in the light grey field) are ranked by their occurrence. Results of the meta-community analysis for coherence and turnover are indicated by embedded absences and replacements.

  • View in gallery

    Percentage of the four dominant nematode species at the sampling sites: K-O (Kühnauer Heide, old forest), K-Y (Kühnauer Heide, young forest), O-O (Oranienbaumer Heide, old forest) and O-Y (Oranienbaumer Heide, young forest) at the five sampling times. Additionally, the number of nematode species is given above the column.

  • View in gallery

    Percentage of nematode feeding types in the cups of the four sampling sites: K-O (Kühnauer Heide, old forest), K-Y (Kühnauer Heide, young forest), O-O (Oranienbaumer Heide, old forest) and O-Y (Oranienbaumer Heide, young forest) at the five sampling times.

  • View in gallery

    Percentage of nematode size classes in the cups of the four sampling sites: K-O (Kühnauer Heide, old forest), K-Y (Kühnauer Heide, young forest), O-O (Oranienbaumer Heide, old forest) and O-Y (Oranienbaumer Heide, young forest) at the five sampling times.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 80 80 10
Full Text Views 142 142 1
PDF Downloads 4 4 0
EPUB Downloads 1 1 0