Vertical and temporal distribution of free-living nematodes dwelling in two sandy-bed streams fed by helocrene springs

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We monitored for 1 year the sediment nematofauna of two headwater streams located near water resurgence from typical helocrene springs. Nematode community composition, benthic organic matter (BOM) and chlorophyll a (BChl a) were assessed in two sediment layers (0-5 and 5-10 cm depth), providing insights into nematode vertical distribution. Globally, the density, diversity and functional richness of nematodes were lower in the upper sediments, although important amounts of BChl a were available there. The assemblages differed markedly between springs, with only 41 shared species from a total of 120 species, suggesting stochastic horizontal distribution even at small geographical scales (<5 km). Bacterial-feeding nematodes dominated in the upper sediments, whereas omnivorous, fungal- and plant-feeding nematodes thrived in the deeper sediments. Reproduction by the dominant algal-feeding species, Prodesmodora arctica, was detected in August. The substantial presence of juveniles throughout the year highlighted the importance of parthenogenetic reproduction.

Vertical and temporal distribution of free-living nematodes dwelling in two sandy-bed streams fed by helocrene springs

in Nematology

Sections

References

  • AndrássyI. (1959). Nematoden aus dem Psammon des Adige-Flusses, I. Memorie del Museo Civico di Storia Naturale di Verona 7163-181.

  • AndrássyI. (1962). Nematoden aus dem Ufergrundwasser der Donau von Bratislava bis Budapest. Archiv für Hydrobiologie Supplement 2791-117.

  • BarbutoM.ZulliniA. (2005). The nematode community of two Italian rivers (Taro and Ticino). Nematology 7667-675.

  • BeierS.TraunspurgerW. (2003a). Seasonal distribution of free-living nematodes in the Körsch, a coarse-grained submountain carbonate stream in southwest Germany. Nematology 5481-504.

  • BeierS.TraunspurgerW. (2003b). Seasonal distribution of free-living nematodes in the Krähenbach, a fine-grained submountain carbonate stream in southwest Germany. Nematology 5113-136.

  • BeierS.BolleyM.TraunspurgerW. (2004). Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshwater Biology 4977-86.

  • BongersT.Van De HaarJ. (1990). On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: an example from the river Rhine. Aquatic Ecology 2437-45.

  • BurtonG.A.PittR.E. (2002). Stormwater effects handbook. Boca Raton, FL, USACRC Press.

  • ClarholmM.PopovicB.RosswallT.SöderströmB.SohleniusB.StaafH.WirénA. (1981). Biological aspects of nitrogen mineralization in humus from a pine forest podsol incubated under different moisture and temperature conditions. Oikos 37137-145.

  • DangerM.CornutJ.ElgerA.ChauvetE. (2012). Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshwater Biology 571017-1030.

  • EisenmannH.MeyerE.TraunspurgerW. (1998). Community structure of selected micro-and meiobenthic organisms in sediment chambers from a prealpine river (Necker, Switzerland). In: BretschkoG.HelesicJ. (Eds). Advances in river bottom ecology. Leiden, The NetherlandsBackhuys Publishers pp.  155-162.

  • EttemaC.H. (1998). Soil nematode diversity: species coexistence and ecosystem function. Journal of Nematology 30159.

  • GaudesA.SabaterS.VilaltaE.MuñozI. (2006). The nematode community in cyanobacterial biofilms in the river Llobregat, Spain. Nematology 8909-919.

  • GoedkoopW.JohnsonR.K. (1996). Pelagic-benthic coupling: profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnology and Oceanography 41636-647.

  • HerbstG.N. (1980). Effects of burial on food value and consumption of leaf detritus by aquatic invertebrates in a lowland forest stream. Oikos 35411-424.

  • HoddaM.PetersL.TraunspurgerW. (2009). Nematode diversity in terrestrial, freshwater aquatic and marine systems. In: WilsonM.J.Kakouli-DuarteT. (Eds). Nematodes as environmental indicators. Wallingford, UKCAB International pp.  45-94.

  • HössS.ClausE.Von Der OheP.C.BrinkeM.GüdeH.HeiningerP.TraunspurgerW. (2011). Nematode species at risk a metric to assess pollution in soft sediments of freshwaters. Environment International 37940-949.

  • JeffreyS.W.T.HumphreyG.F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 1671-194.

  • Kazemi-DinanA.SchroederF.PetersL.MajdiN.TraunspurgerW. (2014). The effect of trophic state and depth on periphytic nematode communities in lakes. Limnologica 4449-57.

  • LegendreP. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology 741659-1673.

  • MajdiN.TraunspurgerW. (2015). Free-living nematodes in the freshwater food web: a review. Journal of Nematology 4728-44.

  • MajdiN.TraunspurgerW.BoyerS.MialetB.TackxM.FernandezR.GehnerS.Ten-HageL.Buffan-DubauE. (2011). Response of biofilm-dwelling nematodes to habitat changes in the Garonne River, France: influence of hydrodynamics and microalgal availability. Hydrobiologia 673229-244.

  • MajdiN.MialetB.BoyerS.TackxM.LeflaiveJ.BoulêtreauS.Ten-HageL.JulienF.FernandezR.Buffan-DubauE. (2012). The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance. Freshwater Science 3138-50.

  • MajdiN.BoichéA.TraunspurgerW.LecerfA. (2014). Predator effects on a detritus-based food web are primarily mediated by nontrophic interactions. Journal of Animal Ecology 83953-962.

  • MajdiN.BoichéA.TraunspurgerW.LecerfA. (2015a). Community patterns and ecosystem processes in forested headwater streams along a gradient of riparian canopy openness. Fundamental and Applied Limnologyin press DOI:10.1127/fal/2015/0740.

  • MajdiN.TraunspurgerW.RichardsonJ.S.LecerfA. (2015b). Small stonefly predators affect microbenthic and meiobenthic communities in stream leaf packs. Freshwater Biologyin press DOI:10.1111/fwb.12622.

  • MartinP.BrunkeM. (2012). Faunal typology of lowland springs in northern Germany. Freshwater Science 31542-562.

  • MottJ.B.HarrisonA.D. (1983). Nematodes from river drift and surface drinking water supplies in southern Ontario. Hydrobiologia 10227-38.

  • NaegeliM.W.HartmannU.MeyerE.I.UehlingerU. (1995). POM-dynamics and community respiration in the sediments of a floodprone prealpine river (Necker, Switzerland). Archiv für Hydrobiologie 133339-347.

  • NalepaT.F.RobertsonA. (1981). Vertical distribution of the zoobenthos in southeastern Lake Michigan with evidence of seasonal variation. Freshwater Biology 1187-96.

  • OcañaA. (1993). Nematode fauna in calcic bicarbonate springs in the province of Granada (Spain). Nematologia Mediterranea 21199-206.

  • OcañaA.MoralesR. (1992). The influence of ionic composition on the distribution of nematode species in springs of the province of Granada (Spain). Hydrobiologia 23781-92.

  • PalmerM.A. (1990). Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. Journal of North American Benthological Society 917-25.

  • PalmerM.A.BelyA.E.BergK.E. (1992). Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89182-194.

  • PfannkucheO.ThielH. (1988). Sample processing. In: HigginsR.P.ThielH. (Eds). Introduction to the study of meiofauna. Washington, DC, USASmithsonian Institution Press pp.  134-145.

  • PottgiesserT.TimmT. (1999). Referenzgewässer der Fliessgewässertypen Nordrhein-Westfalens: Teil 1 Kleine bis mittelgrosse Fliessgewässer. Essen, GermanyLandesumweltamt Nordrhein-Westfalen.

  • R Development Core Team (2012). R: A language and environment for statistical computing. Vienna, AustriaR Foundation for Statistical Computing. Retrieved from http://R-project.org.

  • RistauK.FaupelM.TraunspurgerW. (2013). Effects of nutrient enrichment on the trophic structure and species composition of freshwater nematodes – a microcosm study. Freshwater Science 32155-168.

  • SärkkäJ.PaasivirtaL. (1972). Vertical distribution and abundance of the macro- and meiofauna in the profundal sediments of Lake Päijänne, Finland. Annales Zoologici Fennici 91-9.

  • Schmid-ArayaJ.M. (1997). Temporal and spatial dynamics of meiofaunal assemblages in the hyporheic interstitial of a gravel stream. In: GibertJ.MathieuJ.FournierF. (Eds). Groundwater/surface water ecotones: biological and hydrological interactions and management options. Cambridge, UKCambridge University Press pp.  29-36.

  • SchneiderW. (1922). Beiträge zur Kenntnis der Nematoden-Fauna holsteinischer Quellen. Archiv für Hydrobiologie 14340-345.

  • Seiml-BuchingerR.TraunspurgerW. (2006). Fadenwürmer (Nematoda). In: GereckeR.FranzH. (Eds). Quellen im Nationalpark Berchtesgaden – Lebensgemeinschaften als Indikatoren des Klimawandels. Nationalpark Berchtesgaden Forschungsbericht 51 pp.  104-112.

  • SeinhorstJ.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 467-69.

  • SpiethH.R.MöllerT.PtatschekC.Kazemi-DinanA.TraunspurgerW. (2011). Meiobenthos provides a food resource for young cyprinids. Journal of Fish Biology 78138-149.

  • TankJ.L.Rosi-MarshallE.J.GriffithsN.A.EntrekinS.A.StephenM.L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29118-146.

  • TraunspurgerW. (1996a). Distribution of benthic nematodes in the littoriprofundal and profundal of an oligotrophic lake (Königssee, National Park Berchtesgaden, FRG). Archiv für Hydrobiologie 135557-575.

  • TraunspurgerW. (1996b). Autecology of Monhystera paludicola De Man, 1880 – seasonal, bathymetric and vertical distribution of a free-living nematode in an oligotrophic lake. Internationale Revue der gesamten Hydrobiologie 81199-211.

  • TraunspurgerW. (1997a). Bathymetric, seasonal and vertical distribution of feeding-types of nematodes in an oligotrophic lake. Vie et Milieu 471-7.

  • TraunspurgerW. (1997b). Distribution, seasonal occurrence and vertical pattern of Tobrilus gracilis (Bastian, 1865) and T. medius (Schneider, 1916). Nematologica 4359-81.

  • TraunspurgerW. (1998). Distribution and sex ratio of Ethmolaimus pratensis De Man, 1880 (Nematoda, Chromadorida) in an oligotrophic lake. Nematologica 44391-408.

  • TraunspurgerW. (2000). The biology and ecology of lotic nematodes. Freshwater Biology 4429-45.

  • TraunspurgerW. (2014). Ecology of freshwater nematodes. In: Schmidt-RhaesaA. (Ed.). Handbook of zoology: Gastrotricha Cycloneuralia and GnathiferaVol. 2: Nematoda. Berlin, GermanyDe Gruyter pp.  153-170.

  • TraunspurgerW.DrewsC. (1996). Vertical distribution of benthic nematodes in an oligotrophic lake: seasonality, species and age segregation. Hydrobiologia 33133.

  • TraunspurgerW.BergtoldM.GoedkoopW. (1997). The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112118-122.

  • WeberS.TraunspurgerW. (2014). Top-down control of a meiobenthic community by two juvenile freshwater fish species. Aquatic Ecology 48465-480.

  • Witthöft-MuhlmannA.TraunspurgerW.RothhauptK.O. (2005). Meiobenthic response to river-borne benthic particulate matter – a microcosm experiment. Freshwater Biology 501548-1559.

  • ZulliniA.GattiF.AmbrosiniR. (2011). Microhabitat preferences in springs, as shown by a survey of nematode communities of Trentino (south-eastern Alps, Italy). Journal of Limnology 7093-105.

Figures

  • View in gallery

    Temporal and vertical dynamics in the sediments of the Ems spring with respect to (A, B) mean benthic chlorophyll a (BChl a) and organic matter (BOM) (n = 3, ±SE), (C, D) mean nematode density (n = 5, ±SE) and summed species richness (numbers above bars), and (E, F) mean monthly and yearly relative occurrence of nematode feeding types: Chewers (C), suction feeders (SF), epistrate feeders (EF) and deposit feeders (DF).

  • View in gallery

    Temporal and vertical dynamics in the sediments of the Furlbach spring with respect to (A, B) mean benthic chlorophyll a (BChl a) and organic matter (BOM) (n = 3, ±SE), (C, D) mean nematode density (n = 5, ±SE) and summed species richness (numbers above bars), and (E, F) mean monthly and yearly relative occurrence of nematode feeding types: Chewers (C), suction feeders (SF), epistrate feeders (EF) and deposit feeders (DF).

  • View in gallery

    Changes in the structure of the nematode assemblage dwelling in the Ems streambed (A) over time and (B) with respect to sediment depth, based on a nMDS ordination using the Bray-Curtis similarity. ‘Spider webs’ link each sample to the centroid (bold circle) of the time- or depth-condition to which it belongs. The distal points of rays represent the position of samples in nMDS biplot. Centroids are the (weighted) mean of sample scores according to treatment (time-web, n = 10; depth-web, n = 35).

  • View in gallery

    Changes in the structure of the nematode assemblage dwelling in the Furlbach streambed (A) over time and (B) with respect to sediment depth, based on a nMDS ordination using the Bray-Curtis similarity. ‘Spider webs’ link each sample to the centroid (bold circle) of the time- or depth-condition to which it belongs (see details in Fig. 3 caption).

  • View in gallery

    Relative occurrence of juveniles and gravid females or males of the dominant nematode species over a 1-year period in the sediments of the Ems and Furlbach springs. Values are means (n = 5), boxes show ±SE.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 67 67 4
Full Text Views 175 175 0
PDF Downloads 9 9 0
EPUB Downloads 0 0 0