Nematodes of the Wonderfontein Cave (Witwatersrand Basin, South Africa)

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Although the importance of nematodes, especially in soil ecosystems, is well appreciated, very little is known about the occurrence of and ecosystem services provided by cavernicolous nematodes. This study was undertaken to determine the nematode occurrence, density and distribution in the Wonderfontein Cave (South Africa), which is subjected to the influx of water from the Wonderfontein Spruit. Of the 53 nematode genera collected from the Wonderfontein Cave during the first (April 2013) and second (September 2013) sampling intervals, 22 have never been reported from a cave environment. Results indicated that many of the nematodes found may only be temporary residents introduced from the surface environment. This study reveals the necessity of further efforts to investigate the nematode communities associated with subterranean environments, which will provide a better understanding of the functioning of the associated ecosystems.

Nematodes of the Wonderfontein Cave (Witwatersrand Basin, South Africa)

in Nematology

Sections

References

BanageW. (1963). The ecological importance of free-living soil nematodes with special reference to those of moorland soil. The Journal of Animal Ecology 32133-140.

BonacciO.PipanT.CulverD.C. (2009). A framework for karst ecohydrology. Environmental Geology 56891-900.

BongersT. (1999). The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil 21213-22.

BongersT.FerrisH. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14224-228.

BorgonieG.García-MoyanoA.LitthauerD.BertW.BesterA.van HeerdenE.MöllerC.ErasmusM.OnstottT. (2011). Nematoda from the terrestrial deep subsurface of South Africa. Nature 47479-82.

BridgeJ.StarrJ.L. (2007). Plant nematodes of agricultural importance. Boston, MA, USAAcademic Press.

CoetzeeH.WindeF.WadeP.W. (2006). An assessment of sources pathways mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit Catchment. Pretoria South Africa Water Research Commission.

CulverD.PipanT. (2010). The biology of caves and other subterranean habitats. Oxford, UKOxford University Press.

CulverD.C.ChristmanM.C.ŠeregI.TronteljP.SketB. (2004). The location of terrestrial species-rich caves in a cave-rich area. Subterranean Biology 227-32.

De GrisseA. (1963). A counting dish for nematodes excluding border effect. Nematologica 9162-162.

De WaeleD.JordaanE.M. (1988). Plant-parasitic nematodes on field crops in South Africa. 1. Maize. Revue de Nématologie 1165-74.

DonkinM. (1991). Loss-on-ignition as an estimator of soil organic carbon in A-horizon forestry soils. Communications in Soil Science and Plant Analysis 22233-241.

Du PreezG.C.TheronP.FourieD. (2013). Terrestrial mesofauna biodiversity in unique karst environments in southern Africa. In: Filippi M. & Bosak P. (Eds). Proceedings of the 16th International Congress of Speleology. Brno Czech Speleological Society pp. 386-390.

DurandJ.SwartA.MaraisW.Jansen van RensburgC.HabigJ.Dippenaar-SchoemanA.UeckermannE.JacobsR.De WetL.TiedtL. (2012). Die karst-ekologie van die Bakwenagrot (Gauteng). Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 311-17.

EkschmittK.KorthalsG.W. (2006). Nematodes as sentinels of heavy metals and organic toxicants in the soil. Journal of Nematology 3813-19.

FerreiraR.L.MartinsR.P.YanegaD. (2000). Ecology of bat guano arthropod communities in a Brazilian dry cave. Ecotropica 6105-116.

FerreiraR.L.MartinsR.ProusX. (2007). Structure of bat guano communities in a dry Brazilian cave. Tropical Zoology 2055-74.

FerrisH. (2010). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 4697-104.

FerrisH.BongersT.De GoedeR.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 1813-29.

FordD.C.WilliamsP. (2007). Karst hydrogeology and geomorphology. West SussexJohn Wiley & Sons Ltd.

FourieH.McDonaldA.H.LootsG.C. (2001). Plant-parasitic nematodes in field crops in South Africa. 6. Soybean. Nematology 3447-454.

GeeG.W.OrD. (2002). Particle-size analysis. In: DaneJ.H.ToppC. (Eds). Methods of soil analysis: part 4 – physical methods. Madison, WI, USASoil Science Society of America pp.  255-293.

HammanD.Van RensburgL. (2012). The transfer and accumulation of trace metals from the Wonderfonteinspruit into the surrounding environment. In: PepperD.W.BrebbiaC.A. (Eds). Water and society. Ashurst, UKWIT Press pp.  209-219.

HoddaM.OcañaA.TraunspurgerW. (2006). Nematodes from extreme freshwater habitats. In: AbebeE.AndrássyI.TraunspurgerW. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UKCAB International pp.  179-210.

HooperD.J.HallmannJ.SubbotinS.A. (2005). Methods for extraction, processing and detection of plant and soil nematodes. In: LucM.SikoraR.A.BridgeJ. (Eds). Plant-parasitic nematodes in subtropical and tropical agriculture. Wallingford, UKCAB International pp.  53-86.

HumphreysW.F. (2012). Diversity patterns in Australia. In: CulverD.C.WhiteW.B. (Eds). Encyclopedia of caves. WalthamElsevier pp.  203-219.

KentL.KavalierisI.MartiniJ.HugoP. (1978). Wonderfontein Cave. Annals of the Geological Survey (South Africa) 11303-308.

LakerM.C.DupreezC.C. (1982). An investigation into the accuracy of hydrometers for soil particle size determination. Agroplantae 1417-22.

MouldsT. (2004). Review of Australian cave guano ecosystems with a checklist of guano invertebrates. Proceedings of the Linnean Society of New South Wales 1251-42.

MulecJ.CovingtonE.WalochnikJ. (2013). Is bat guano a reservoir of Geomyces destructans? Open Journal of Veterinary Medicine 3161-167.

MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9271-284.

MuschiolD.GiereO.TraunspurgerW. (2015). Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnology and Oceanography 60127-135.

MuschiolD.MarkovićM.ThreisI.TraunspurgerW. (2008). Predatory copepods can control nematode populations: a functional-response experiment with Eucyclops subterraneus and bacterivorous nematodes. Fundamental and Applied Limnology/Archiv für Hydrobiologie 172317-324.

NeherD.A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology 33161-168.

NtidiK.N.FourieH.Mc DonaldA.H.De WaeleD.MienieC.M. (2012). Plant-parasitic nematodes associated with weeds in subsistence agriculture in South Africa. Nematology 14875-887.

PlattH. (1994). Foreword. In: LorenzenS. (Ed.). The phylogenetic systematics of free-living nematodes. London, UKRay Society pp.  i-ii.

PoinarG.O.JrSarbuS. (1994). Chronogaster troglodytes sp. n. (Nemata: Chronogasteridae) from Movile Cave, with a review of cavernicolous nematodes. Fundamental and Applied Nematology 17231-237.

PoulsonT.L. (2012). Food sources. In: CulverD.C.WhiteW.B. (Eds). Encyclopedia of caves. Waltham, UKElsevier pp.  323-334.

RomeroA. (2009). Cave biology: life in darkness. Cambridge, UKCambridge University Press.

SieriebriennikovB.FerrisH.De GoedeR.G.M. (2014). NINJA: an automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology 6190-93.

SonneveldC.Van Den EndeJ. (1971). Soil analysis by means of a 1:2 volume extract. Plant and Soil 35505-516.

Van RensburgC.J. (2010). Nematodes from the Bakwena Cave in Irene South Africa. M.Sc. Thesis Ghent University Ghent Belgium.

WelbournW.C. (1999). Invertebrate cave fauna of Kartchner caverns, Kartchner caverns, Arizona. Journal of Cave and Karst Studies 6193-101.

WynneJ.J. (2013). Inventory, conservation, and management of lava tube caves at El Malpais National Monument, New Mexico. Park Science 3045-55.

Figures

  • View in gallery

    The location of the Wonderfontein Cave in the Gauteng Province (South Africa) with the Main Entrance Sinkhole situated 5.7 km north-north-west of central Carletonville. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

  • View in gallery

    A survey map of the Wonderfontein Cave (modified from Kent et al. (1978)) illustrates the main features of the extensive system indicating also the subterranean and surface (Cave Inflow Area) sampling sites from which, if available, water, soil, sediment and guano was sampled. Blue arrows represent the main water flow path. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685411.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 15 15 7
Full Text Views 7 7 7
PDF Downloads 2 2 2
EPUB Downloads 0 0 0