Effect of short-term hypoxia on the feeding activity of abundant nematode genera from an intertidal mudflat

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The effect of short-term hypoxia (6 days) on the feeding activity of abundant nematode genera was investigated by means of a tracer experiment. Nematodes were sampled from the Paulina intertidal flat in the Westerschelde estuary (south-west Netherlands) and incubated with 13C pre-labelled diatoms at the sediment-water interface in oxic and hypoxic treatments. In general, specific uptake and uptake of carbon per unit of nematode carbon were low in all studied genera, which indicated that the added diatoms represented a limited food source for the investigated nematode genera. Results from such a low uptake are difficult to interpret; however, there was no significant decrease in feeding activity of all dominant nematodes in the hypoxic treatments. The low carbon uptake might be related to low access of nematodes and their low feeding preference to the added diatoms in the experimental cores.

Nematology

International Journal of Fundamental and Applied Nematological Research

Sections

References

AndersonM.J.GorleyR.N.ClarkeK.R. (2008). PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth, UK, PRIMER-E.

BaeyensW.van EckB.LambertC.WollastR.GoeyensL. (1998). General description of the Scheldt estuary. In: BaeyensW.F.J. (Ed.). Trace metals in the Westerschelde estuary: a case-study of a polluted, partially anoxic estuary. Hydrobiology 128, pp.  1-14.

BlanchardG.F. (1990). Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Marine Ecology Progress Series 68, 101-111.

BraeckmanU.Van ColenC.SoetaertK.VincxM.VanaverbekeJ. (2011a). Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Marine Ecology Progress Series 422, 179-191.

BraeckmanU.ProvoostP.MoensT.SoetaertK.MiddelburgJ.J.VincxM.VanaverbekeJ. (2011b). Biological vs. physical mixing effects on benthic food web dynamics. PLoS ONE 6, e18078.

BraeckmanU.VanaverbekeJ.VincxM.Van OevelenD.SoetaertK. (2013). Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS ONE 8, e59289.

BraeckmanU.Yazdani FoshtomiM.Van GansbekeD.MeysmanF.SoetaertK.VincxM.VanaverbekeJ. (2014). Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17, 720-737.

BuchananJ.B. (1984). Sediment analysis. In: HolmeN.A.McIntyreA.D. (Eds). Methods for the study of marine benthos. Oxford and Edinburgh, UK, Blackwell Scientific Publications, pp.  41-65.

DuG.Y.OakJ.H.LiH.ChungI.K. (2010). Effect of light and sediment grain size on the vertical migration of benthic diatoms. Algae 25, 133-140.

DuG.Y.LiW.T.LiH.B.ChungI.K. (2012). Migratory responses of benthic diatoms to light and temperature monitored by chlorophyll fluorescence. Journal of Plant Biology 55, 159-164.

FrancoM.A.SoetaertK.CostaM.J.VincxM.VanaverbekeJ. (2008). Uptake of phytodetritus by meiobenthos using 13C labelled diatoms and Phaeocystis in two contrasting sediments from the North Sea. Journal of Experimental Marine Biology and Ecology 362, 1-8.

GiereO. (2009). Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edition. Berlin, Germany, Springer.

GrayJ.S.WuR.S.OrY.Y. (2002). Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238, 249-279.

GuerriniA.ColangeloM.A.CeccherelliV.U. (1998). Recolonization patterns of meiobenthic communities in brackish vegetated and unvegetated habitats after induced hypoxia/anoxia. Hydrobiologia 375, 73-87.

GuiliniK.BezerraT.N.Eisendle-FlöcknerU.DeprezT.FonsecaG.HolovachovO.LeducD.MiljutinD.MoensT.SharmaJ. (2016). NeMys: world database of free-living marine nematodes, available online at http://nemys.ugent.be (accessed 17 July 2014).

GuillardR.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: SmithW.L.ChandleyM.H. (Eds). Culture of marine invertebrate animals. New York, NY, USA, Plenum Press, pp.  29-60.

HeipC.H.R. (1988). Biota and abiotic environment in the Westerschelde estuary. In: Hummel, H., Bakker, C., Huiskes, A.H.L. & Merks, A.G.A. (Eds). Hydrobiology and chemistry of the Schelde and Westerschelde, Proceedings of the Schelde symposium. Amsterdam, The Netherlands, Royal Netherlands Academy of Arts and Sciences, pp. 31-34.

HillebrandH.DürselenC.-D.KirschtelD.PollingherU.ZoharyT. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403-424.

HuettelM.GustG. (1992). Impact of bioroughness of interfacial solute exchange in permeable sediments. Marine Ecology Progress Series 89, 253-267.

JewsonD.H.LowryS.F.BowenR. (2006). Co-existence and survival of diatoms on sand grains. European Journal of Phycology 41, 131-146.

KampA.de BeerD.NitschJ.L.LavikG.StiefP. (2011). Diatoms respire nitrate to survive dark and anoxic conditions. Proceedings of the National Academy of Sciences of the United States of America 108, 5649-5654.

KeelingR.F.KörtzingerA.K.GruberN. (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science 2, 199-229.

KristiansenK.D.KristensenE.JensenM.H. (2002). The influence of water column hypoxia on the behaviour of manganese and iron in sandy coastal marine sediment. Estuarine, Coastal and Shelf Science 55, 645-654.

McQuoidM.R.GodheA.NordbergK. (2002). Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. European Journal of Phycology 37, 191-201.

MiddelburgJ.LevinL.A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 1273-1293.

MiddelburgJ.J.BarranguetC.BoschkerH.T.S.HermanP.M.J.MoensT.HeipC.H.R. (2000). The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45, 1224-1234.

ModigH.OlafssonE. (1998). Responses of Baltic benthic invertebrates to hypoxic events. Journal of Experimental Marine Biology and Ecology 229, 133-148.

MoensT.VincxM. (1997). Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211-227.

MoensT.Van GansbekeD.VincxM. (1999a). Linking estuarine intertidal nematodes to their suspected food: a case study from the Westerschelde estuary (south-west Netherlands). Journal of the Marine Biological Association of the United Kingdom 79, 1017-1027.

MoensT.VerbeeckL.De MaeyerA.SwingsJ.VincxM. (1999b). Selective attraction of marine bacterivorous nematodes to their bacterial food. Marine Ecology Progress Series 176, 165-178.

MoensT.LuytenC.MiddelburgJ.J.HermanP.M.J.VincxM. (2002). Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Marine Ecology Progress Series 234, 127-137.

MoensT.BouillonS.GallucciF. (2005). Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 85, 1401-1407.

MoensT.VafeiadouA.M.De GeyterE.VanormelingenP.SabbeK.De TrochM. (2014). Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. Journal of Sea Research 92, 125-133.

MoffittS.E.HillT.M.RoopnarineP.D.KennettJ.P. (2015). Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences of the United States of America 112, 4684-4689.

MoodleyL.Van Der ZwaanG.J.HermanP.M.J.KempersL.Van BreugelP. (1997). Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Marine Ecology Progress Series 158, 151-163.

MuresanM.GomoiuM.T. (2012). Free-nematodes in the NW Black Sea meiobenthos-diversity, abundance, distribution and importance as indicator of hypoxic waters. Geophysical Research Abstracts 14, 2012EGUGA.14.7863M.

OttJ.A.SchiemerF. (1973). Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Netherlands Journal of Sea Research 7, 133-243.

PasottiP.De TrochM.RaesM.VanreuselA. (2012). Feeding ecology of shallow water meiofauna: insights from a stable isotope tracer experiment in Potter Cove, King George Island, Antarctica. Polar Biology 35, 1629-1640.

RabalaisN.N.DíazR.J.LevinL.A.TurnerR.E.GilbertD.ZhangJ. (2010). Dynamics and distribution of natural and human caused hypoxia. Biogeosciences 7, 585-619.

RiedelB.PadosT.PretterebnerK.SchiemerL.SteckbauerA.HaselmairM.ZuschinM.StachowitschM. (2014). Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level. Biogeosciences 11, 1491-1518.

Rzeznik-OrignacJ.BoucherG.FichetD.RichardP. (2008). Stable isotope analysis of food source and trophic position of intertidal nematodes and copepods. Marine Ecology Progress Series 359, 145-150.

SauerJ.WenderothK.MaierU.G.RhielE. (2002). Effects of salinity, light and time on the vertical migration of diatom assemblages. Diatom Research 17, 189-203.

SchiemerF.DuncanA. (1974). The oxygen consumption of a fresh-water benthic nematode, Tobrilus gracilis (Bastian). Oecologia 15, 121-126.

SoetaertK.VincxM.WittoeckJ.TulkensM.Van GansbekeD. (1994). Spatial patterns of Westerschelde meiobenthos. Estuarine, Coastal and Shelf Science 39, 367-388.

SoetaertK.MuthumbiA.HeipC. (2002). Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Marine Ecology Progress Series 242, 179-193.

SoetaertK.MiddelburgJ.J.HeipC.MeireP.Van DammeS.MarisT. (2006). Long-term change in dissolved inorganic nutrients in the heterotropic Scheldt estuary (Belgium, The Netherlands). Limnology and Oceanography 51, 409-423.

SteyaertM.VanaverbekeJ.VanreuselA.BarranguetC.LucasC.VincxM. (2003). The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science 58, 353-366.

SteyaertM.MoodleyL.VanaverbekeJ.VandewieleS.VincxM. (2005). Laboratory experiments on the infaunal activity of intertidal nematodes. Hydrobiologia 540, 217-223.

SteyaertM.MoodleyL.NadongT.MoensT.SoetaertK.VincxM. (2007). Responses of intertidal nematodes to short-term anoxic events. Journal of Experimental Marine Biology and Ecology 345, 175-184.

TaheriM.BraeckmanU.VincxM.VanaverbekeJ. (2014). Effect of short-term hypoxia on marine nematode community structure and vertical distribution pattern in three different sediment types of the North Sea. Marine Environmental Research 99, 149-159.

TaheriM.GregoM.RiedelB.VincxM.VanaverbekeJ. (2015). Patterns in nematode community during and after experimentally induced anoxia in the northern Adriatic Sea. Marine Environmental Research 110, 110-123.

TietjenJ.H.LeeJ.J. (1973). Life history and feeding habitats of the marine nematode, Chromadora macrolaimoides Steiner. Oecologia 12, 303-314.

TilmanD.FargioneJ.WolffB.D’AntonioC.DobsonA.HowarthR.SchindlerD.SchlesingerW.H.SimberloffD.SwackhamerD. (2001). Forecasting agriculturally driven global environmental change. Science 292, 281-284.

TraviziA. (2000). Effect of anoxic stress on density and distribution of sediment meiofauna. Periodicum biologorum (0031-5362) 102, 147-228.

VafeiadouA.M.MateratskiP.AdãoH.De TrochM.MoensT. (2014). Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11, 4001-4014.

Van ColenC.MontserratF.VincxM.HermanP.M.J.YsebaertT.J.DegraerS. (2008). Macrobenthic recovery from hypoxia in an estuarine tidal mudflat. Marine Ecology Progress Series 372, 31-42.

Van ColenC.MontserratF.VerbistK.VincxM.SteyaertM.VanaverbekeJ.HermanP.M.J.DegraerS.YsebaertT. (2009). Tidal flat nematode responses to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Marine Ecology Progress Series 381, 189-197.

Van ColenC.De BackerA.MeulepasG.van der WalD.VincxM.DegraerS.YsebaertT. (2010). Diversity, trait displacements and shifts in assemblage structure of tidal flat deposit feeders along a gradient of hydrodynamic stress. Marine Ecology Progress Series 406, 79-89.

Van ColenC.RossiF.MontserratF.AnderssonM.G.I.GribsholtB.HermanP.M.J.DegraerS.VincxM.YsebaertT.MiddelburgJ.J. (2012). Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning. PLoS ONE 7, e49795.

Vaquer-SunyerR.DuarteC.M. (2010). Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography 55, 1075-1082.

WetzelM.A.FleegerJ.W.PowersS.P. (2001). Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. In: RabalaisN.N.TurnerR.E. (Eds). Coastal hypoxia: consequences for living resources and ecosystems. Washington, DC, USA, American Geophysical Union, pp.  165-184.

WieserW. (1953). Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkivfür Zoology 4, 439-483.

WieserW.KanwisherJ. (1961). Ecological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. Limnology and Oceanography 6, 262-270.

YsebaertT. (2000). Macrozoobenthos and waterbirds in the estuarine environment: spatio-temporal patterns at different scales. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium.

Figures

  • Location of the sampling site, the Paulina intertidal mudflat in the Westerschelde estuary, south-west Netherlands.

    View in gallery
  • Mean ± SE specific uptake of labelled diatom ‰ by nematodes under the oxic and hypoxic treatments.

    View in gallery
  • Mean ± SE uptake of carbon per unit of organism carbon (μgC (μgC nematode)−1) under the oxic and hypoxic treatments.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 19 19 9
Full Text Views 5 5 5
PDF Downloads 0 0 0
EPUB Downloads 0 0 0