The influence of thiacloprid on the feeding behaviour of the copepod, Diacyclops bicuspidatus, preying on nematodes

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Nowadays, neonicotinoids are the most widespread insecticides. As neurotoxins with high toxicity to many arthropods, they provide effective pest control, but it also became apparent that they are impacting non-target organisms in freshwater habitats. This study investigated the influence of the neonicotinoid thiacloprid on the behaviour of the copepod, Diacyclops bicuspidatus, feeding on different nematode species (Caenorhabditis elegans, Plectus aquatilis, Panagrolaimus sp.) and on a natural nematode community. All experiments demonstrated that thiacloprid led to decreased feeding of D. bicuspidatus (EC50 values 116-158 μg l−1). In addition, in the experiment where nematodes from a natural sediment were offered as prey, copepod feeding was significantly reduced. The copepod feeding response was a more sensitive endpoint than acute and chronic toxicity tests with daphnids that are routinely used for regulatory risk assessment. An impact on feeding is also a parameter with immediate relevance for the copepod population (reduced fitness) and the associated ecosystem.

The influence of thiacloprid on the feeding behaviour of the copepod, Diacyclops bicuspidatus, preying on nematodes

in Nematology

Sections

References

  • AlexanderA.C.CulpJ.M.LiberK.CessnaA.J. (2007). Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes. Environmental Toxicology and Chemistry 261726-1732. DOI: 10.1897/07-015R.1

  • AndrássyI. (1956). Die Rauminhalts- und Gewichtsbestimmung der Fadenwuermer (Nematoden). Acta Zoologica Hungarica 21-15.

  • BeierS.BolleyM.TraunspurgerW. (2004). Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshwater Biology 4977-86. DOI: 10.1046/j.1365-2426.2003.01168.x

  • BeketovM.A.LiessM. (2008). Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environmental Toxicology and Chemistry 27461-470. DOI: 10.1897/07-322R.1

  • BöttgerR.FeibickeM.SchallerJ.DudelG. (2013). Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosms. Ecotoxicology and Environmental Safety 9393-100. DOI: 10.1016/j.ecoenv.2013.04.006

  • DumontH.J.Van de VeldeI.DumontS. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 1975-97. DOI: 10.1007/BF00377592

  • EnglertD.BundschuhM.SchulzR. (2012). Thiacloprid affects trophic interaction between gammarids and mayflies. Environmental Pollution 16741-46. DOI: 10.1016/j.envpol.2012.03.024

  • EvansM.S.StewartJ.A. (1977). Epibenthic and benthic microcrustaceans (copepods, cladocerans, ostracods) from a nearshore area in southeastern Lake Michigan. Limnology and Oceanography 221059-1066. DOI: 10.4319/lo.1977.22.6.1059

  • Eyualem-AbebeM.TraunspurgerW.MichielsI.C. (2006). Dynamics of freshwater nematodes: abundance, biomass and diversity. In: Eyualem-AbebeM.AndrássyI.TraunspurgerW. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UKCAB International pp.  77-93.

  • Gomez-EylesJ.L.SvendsenC.ListerL.MartinH.HudsonM.E.SpurgeonD.J. (2009). Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicology and Environmental Safety 7271-79. DOI: 10.1016/j.ecoenv.2008.07.006

  • GoulsonD. (2013). Review: an overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50977-987. DOI: 10.1111/1365-2664.12111

  • HammerØ.HarperD.A.T.RyanP.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electron 41-9.

  • HothornT.BretzF.WestfallP. (2008). Simultaneous inference in general parametric models. Biometrical Journal 50346-363. DOI: 10.1002/bimj.200810425

  • HumesA.G. (1994). How many copepods? Hydrobiologia 292-2931-7. DOI: 10.1007/BF00229916

  • IslamM.S.TanakaM. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin 48624-649. DOI: 10.1016/j.marpolbul.2003.12.004

  • ISO (2010). Water quality – determination of the toxic effect of sediment and soil samples on growth fertility and reproduction of Caenorhabditis elegans (Nematoda). International Organization for Standardization 10872 1-17.

  • KieferF. (1973). Einführung in die Kleinlebewelt: Ruderfußkrebse (Copepoden)3rd edition. Stuttgart, GermanyKosmos-Verlag.

  • KreutzweiserD.P.GoodK.P.ChartrandD.T.ScarrT.A.ThompsonD.G. (2008). Toxicity of the systemic insecticide, imidacloprid, to forest stream insects and microbial communities. Bulletin of Environmental Contamination and Toxicology 80211-214. DOI: 10.1007/s00128-007-9347-8

  • LANUV NRW (2015). Verordnung über das Inverkehrbringen und die Aussaat von mit bestimmten Pflanzenschutzmitteln behandeltem Saatgut für Wintergetreide. Bundesanzeiger V1:1.

  • LoureiroS.SvendsenC.FerreiraL.G.PinheiroC.RibeiroF.SoaresA.M.V.M. (2010). Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Environmental Toxicology and Chemistry 291716-1726. DOI: 10.1002/etc.198

  • MartinouA.F.StavrinidesM.C. (2015). Effects of sublethal concentrations of insecticides on the functional response of two mirid generalist predators. PLoS ONE 101-10. DOI: 10.1371/journal.pone.0144413

  • MorrisseyC.A.MineauP.DevrisJ.H.Sanchez-BayoF.LiessM.CavallaroM.C.LiberK. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environment International 74291-303. DOI: 10.1016/j.envint.2014.10.024

  • MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9271-284. DOI: 10.1163/156854107780739117

  • MuschiolD.MarkovicM.ThreisI.TraunspurgerW. (2008a). Predator-prey relationship between the cyclopoid copepod Diacyclops bicuspidatus and a free-living bacterivorous nematode. Nematology 1055-62. DOI: 10.1163/156854108783360203

  • MuschiolD.MarkovicM.ThreisI.TraunspurgerW. (2008b). Predatory copepods can control nematode populations: a functional-response experiment with Eucyclops subterraneus and bacterivorous nematodes. Fundamental and Applied Limnology 172317-324. DOI: 10.1127/1863-9135/2008/0172-0317

  • OECD (2004). Daphnia sp., acute immobilisation test. OECD Guideline for Testing of Chemicals 2021-12.

  • PavlakiM.D.PereiraR.LoureiroS.SoaresA.M.V.M. (2011). Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicology and Environmental Safety 7499-110. DOI: 10.1016/j.ecoenv.2010.07.010

  • PeñaA.Rodríguez-LiébanaJ.A.MingoranceM.D. (2011). Persistence of two neonicotinoid insecticides in wastewater, and in aqueous solutions of surfactants and dissolved organic matter. Chemosphere 84464-470. DOI: 10.1016/j.chemosphere.2011.03.039

  • PolettiM.MaiaA.H.N.OmotoC. (2007). Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biological Control 4030-36. DOI: 10.1016/j.biocontrol.2006.09.001

  • PtatscheckC.Kreuzinger-JanikB.PutzkiH.TraunspurgerW. (2015). Insights into the importance of nematode prey for chironomid larvae. Hydrobiologia 757143-153. DOI: 10.1007/s10750-015-2246-9

  • RasbandW.S. (2015). ImageJ version 1.49. Bethesda, MD, USAU.S. National Institutes of Health. Available online at http://imagej.nih.gov/ij/

  • RitzC.StreibigJ.C. (2005). Bioassay analysis using R. Journal of Statistical Software 121-22.

  • Sánchez-BayoF.HyneR.V. (2014). Detection and analysis of neonicotinoids in river waters – development of a passive sampler for three commonly used insecticides. Chemosphere 99143-151. DOI: 10.1016/j.chemosphere.2013.10.051

  • SarvalaJ. (1998). Ecology and role of benthic copepods in northern lakes. Journal of Marine Systems 1575-86. DOI: 10.1016/S0924-7963(97)00040-7

  • SeinhorstJ.W. (1962). On the killing, fixation and transferring to glycerin of nematodes. Nematologica 829-32. DOI: 10.1163/187529262X00981

  • SohleniusB. (1979). A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 230-40. DOI: 10.1111/j.1600-0587.1979.tb00679.x

  • StembergerR.S. (1985). Prey selection by the copepod Dyacyclops thomasi. Oecologia 65492-497.

  • SüßA.BischoffG.MuellerA.C.W.BuhrL. (2006). Chemisch-biologisches Monitoring zu Pflanzenschutzmittelbelastungen und Lebensgemeinschaften in Gräben des Alten Landes. Nachrichtenblatt Deutscher Pflanzenschutzdienst 5828-42.

  • TilmanD.CassmanK.G.MatsonP.A.NaylorR.PolaskyS. (2002). Agricultural sustainability and intensive production practices. Nature 418671-677. DOI: 10.1038/nature01014

  • TomizawaM.CasidaJ.E. (2005). Mechanisms of selective action. Annual Review of Pharmacology and Toxicology 45247-268. DOI: 10.1146/annurev.pharmtox.45.120403.095930

  • TraunspurgerW.DrewsC. (1996). Vertical distribution of benthic nematodes in an oligotrophic lake: seasonality, species and age segregation. Hydrobiologia 33133-42. DOI: 10.1007/BF00025405

  • TraunspurgerW.HössS.Witthöft-MühlmannA.WesselsM.GüdeH. (2012). Meiobenthic community patterns of oligotrophic and deep Lake Constance in relation to water depth and nutrients. Fundamental and Applied Limnology 180233-248. DOI: 10.1127/1863-9135/2012/0144

  • WilsonI.J.TownsendC.R. (1983). The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia 60406-411.

Figures

  • View in gallery

    Number of consumed (out of 20) Caenorhabditis elegans, Plectus aquatilis and Panagrolaimus sp. by Diacyclops bicuspidatus after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Caenorhabditis elegans: Open circles and solid line; P. aquatilis: Open triangles and long dashed line; Panagrolaimus sp.: Crosses and short dashed line. The vertical bar depicts the range of the maximum standard deviation (hypothetical mean ± s.d.; n = 12-15).

  • View in gallery

    Consumption rate of Diacyclops bicuspidatus feeding on Caenorhabditis elegans, Plectus aquatilis and Panagrolaimus sp. after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Caenorhabditis elegans: open circles and solid line; P. aquatilis: open triangles and long dashed line; Panagrolaimus spec.: crosses and short dashed line. The vertical bar depicts the range of the maximum standard deviation (hypothetical mean ± s.d.; n = 12-15).

  • View in gallery

    Number (out of 20) of Caenorhabditis elegans consumed by Diacyclops bicuspidatus after 2 h in the presence of sand and in response to varying thiacloprid concentrations. The values for all replicates are presented (open circles), whereas the solid squares are the mean at each thiacloprid concentration (n = 14-15).

  • View in gallery

    A: Total number of nematodes consumed (out of 30) by Diacyclops bicuspidatus exposed to different thiacloprid concentrations (all three nematode species, Caenorhabditis elegans, Plectus aquatilis and Panagrolaimus sp., ten of each, presented as prey simultaneously). The values for all replicates are presented (open circles) and in addition the means (solid squares) (n = 14-15). B: Relative amounts of each prey species from the total number of nematodes consumed (0 μg l−1 n = 15, 62.5 μg l−1 n = 12, 125 μg l−1 n = 6, 250 μg l−1 n = 6, 500 μg l−1 n = 2).

  • View in gallery

    Mean number (± s.d., n = 8-9) of nematodes from the natural nematode community that were not consumed by Diacyclops bicuspidatus in different thiacloprid treatments (after 10 h).

  • View in gallery

    NMDS plots of (A) the size classes data (stress value 0.152) and (B) the species data (stress value 0.169) for the nematodes from the natural community that had not been consumed by the copepod, Diacyclops bicuspidatus, in 169 μg l−1 thiacloprid (crosses), in 62 μg l−1 thiacloprid (open triangles), in the control treatment with D. bicuspidatus (filled circles) and in the control treatment without D. bicuspidatus (open circles).

  • View in gallery

    Fraction of immobile (dead) copepods out of ten when exposed to different thiacloprid concentrations for 24 h (open circles and solid line) and after subsequent recovery for 24 h (filled triangles, dashed line) (n = 3).

  • View in gallery

    Number of consumed Caenorhabditis elegans. (out of 20) by Diacyclops bicuspidatus after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 14-15).

  • View in gallery

    Consumption rate of Diacyclops bicuspidatus feeding on Caenorhabditis elegans after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 14-15).

  • View in gallery

    Number of consumed Plectus aquatilis (out of 20) by Diacyclops bicuspidatus after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 13-15).

  • View in gallery

    Consumption rate of Diacyclops bicuspidatus feeding on Plectus aquatilis after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 12-15).

  • View in gallery

    Number of consumed Panagrolaimus sp. (out of 20) by Diacyclops bicuspidatus after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 13-15).

  • View in gallery

    Consumption rate of Diacyclops bicuspidatus feeding on Panagrolaimus sp. after 15 min (A) and 60 min (B) in response to varying thiacloprid concentrations. Open circles: individual replicates, filled square: mean value (n = 12-15).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 60 60 7
Full Text Views 184 184 1
PDF Downloads 4 4 1
EPUB Downloads 0 0 0