Molecular and morphological characterisation of Ditylenchus persicus n. sp. (Nematoda: Anguinidae) from Kermanshah province, western Iran

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


A new species of the genus Ditylenchus, D. persicus n. sp., was collected around the roots of grapevine and is described and illustrated herein based on morphological and molecular studies. The new species is characterised by a body length of 783 (635-928) μm and 689 (670-715) μm in female and male, respectively, delicate stylet 6.2 (5.0-7.0) μm long, six lines in the lateral field, median bulb of pharynx well developed, muscular with crescentic valve, basal pharyngeal bulb pyriform with 10 (8-13) μm long stem extending into intestine, post-vulval uterine sac relatively short, 16 (14-18) μm long, female and male tail elongate-conoid with finely rounded terminus, and bursa covering 65-80% of male tail length. Morphologically, D. persicus n. sp. appears closer to five known species of the genus, namely: D. arachis, D. caudatus, D. clarus, D. myceliophagus and D. nanus. The results of phylogenetic analyses based on sequences of D2-D3 expansion region of 28S rRNA, ITS and partial 18S rRNA genes confirmed the close molecular relationship between D. persicus n. sp. and other Ditylenchus species such as D. myceliophagus, D. africanus, D. arachis, D. destructor and D. halictus.


International Journal of Fundamental and Applied Nematological Research



BoutsikaK.BrownD.J.F.PhillipsM.S.BlokV.C. (2004). Molecular characterisation of the ribosomal DNA of Paratrichodorus macrostylus, P. pachydermus, Trichodorus primitivus and T. similis (Nematoda: Trichodoridae). Nematology 6, 641-654.

BrzeskiM.W. (1991). Review of the genus Ditylenchus Filipjev, 1936 (Nematoda: Anguinidae). Revue de Nématologie 14, 9-59.

BütschliO. (1873). Beitrage zur Kenntnis der freilebende nematoden. Nova Acta Academiae Naturale Carolinge 36, 1-124.

CastresanaJ. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.

ChizhovV.N.BorisovB.A.SubbotinS.A. (2010). A new stem nematode, Ditylenchus weischeri sp. n. (Nematoda: Tylenchida), a parasite of Cirsium arvense (L.) Scop in the Central Region of the non-Chernozem zone of Russia. Russian Journal of Nematology 18, 95-102.

DarribaD.TaboadaG.L.DoalloR.PosadaD. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.

De GrisseA.T. (1969). Redescription ou modifications de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 34, 351-369.

De LeyP.FélixM.A.FrisseL.M.NadlerS.A.SternbergP.W.ThomasK.W. (1999). Molecular and morphological characterization of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1, 591-612.

De LucaF.ReyesA.TroccoliA.CastilloP. (2011). Molecular variability and phylogenetic relationships among different species and populations of Pratylenchus (Nematoda: Pratylenchidae) as inferred from the analysis of the ITS rDNA. European Journal of Plant Pathology 130, 415-426.

FilipjevI.N. (1936). On the classification of the Tylenchinae. Proceedings of the Helminthological Society of Washington 3, 80-82.

Giblin-DavisR.M.ErteldC.KanzakiN.YeW.ZengY.CenterB.J. (2010). Ditylenchus halictus n. sp. (Nematoda: Anguinidae), an associate of the sweat bee, Halictus sexcinctus (Halictidae), from Germany. Nematology 12, 891-904.

GoodeyJ.B. (1958). Ditylenchus myceliophagus n. sp. (Nematoda: Tylenchidae). Nematologica 3, 91-96.

GoodeyT. (1951). Soil and freshwater nematodes. London, UK, Methuen & Co.

HallT.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95-98.

HooperD.J. (1973). Ditylenchus destructor. CIH Descriptions of plant-parasitic nematodes, Set 2, No. 21. Commonwealth Agricultural Bureaux, Farnham Royal, UK.

KatohK.StandleyD.M. (2013). MAFFT multiple sequence alignment 542 software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.

KühnJ. (1857). Über das Vorkommenvon Anguillulen in erkrankten Bluhtenkopfen von Dipsacus fullonum L. Zeitschrift für Wissenschaftliche Zoologie 9, 129-137.

OliveiraR.D.L.SantinA.M.SeniD.J.DietrichA.SalazarL.A.SubbotinS.A.Mundo-OcampoM.GoldenbergR.BarretoR.W. (2013). Ditylenchus gallaeformans sp. n. (Tylenchida: Anguinidae) – a neotropical nematode with biocontrol potential against weedy Melastomataceae. Nematology 15, 179-196.

PageR.D.M. (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358.

Palomares-RiusJ.E.Cantalapiedra-NavarreteC.CastilloP. (2014). Cryptic species in plant-parasitic nematodes. Nematology 16, 1105-1118.

QiaoY.YuQ.BadissA.ZaidiM.A.PonomarevaE.HuY.YeW. (2016). Paraphyletic genus Ditylenchus Filipjev (Nematoda, Tylenchida), corresponding to the D. triformis-group and the D. dipsaci-group scheme. ZooKeys 568, 1-12.

RonquistF.HuelsenbeckJ.P. (2003). MrBAYES3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.

SiddiqiM.R. (1963). Four new species in the subfamily Tylenchinae (Nematoda) from north India. Zeitschrift für Parasitenkunde 23, 397-404.

SiddiqiM.R. (2000). Tylenchida parasites of plants and insects, 2nd edition. Wallingford, UK, CABI Publishing.

SturhanD.BrzeskiM.W. (1991). Stem and bulb nematodes, Ditylenchus spp. In: NickleW.R. (Ed.). Manual of agricultural nematology. New York, NY, USA, Marcel Dekker, pp.  423-464.

SubbotinS.A.KrallE.L.RileyI.T.ChizhovV.N.StaelensA.De LooseM.MoensM. (2004). Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from Internal Transcribed Spacer sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 30, 226-235.

SubbotinS.A.MadaniM.KrallE.SturhanD.MoensM. (2005). Molecular diagnostics, taxonomy and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology 95, 1308-1315.

SubbotinS.A.SturhanD.ChizhovV.VovlasN.BaldwinJ. (2006). Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology 8, 455-474.

ThorneG. (1934). Some plant-parasitic nemas, with descriptions of three new species. Journal of Agricultural Research 49, 755-763.

ThorneG. (1945). Ditylenchus destructor, n. sp. the potato rot nematode, and Ditylenchus dipsaci (Kühn, 1957) Filipjev, 1936, the teasel nematode (Nematoda: Tylenchidae). Proceedings of the Helminthological Society of Washington 12, 27-34.

ThorneG.MalekR.B. (1968). Nematodes of the Northern Great Plains. Part I. Tylenchida [Nemata: Secernentea]. Agricultural Experimental Station Bulletin 31, South Dakota State Unniversity, Brookings, SD, USA.

TzortzakakisE.A.Archidona-YusteA.LiébanasG.BirmpilisI.G.Cantalapiedra-NavarreteC.Navas-CortésJ.A.CastilloP.Palomares-RiusJ.E. (2016). Rotylenchus cretensis n. sp. and R. cypriensis Antoniou 1980 (Nematoda: Hoplolaimidae) recovered from the rhizosphere of olive at Crete (Greece) with a molecular phylogeny of the genus. European Journal of Plant Pathology 144, 167-184.

VovlasN.TroccoliA.Palomares-RiusJ.E.De LucaF.LiébanasG.LandaB.B.SubbotinS.A.CastilloP. (2011). Ditylenchus gigas n. sp. parasitizing broad bean: a new stem nematode singled out from the Ditylenchus dipsaci species complex using a polyphasic approach with molecular phylogeny. Plant Pathology 60, 762-775.

VovlasN.TroccoliA.Palomares-RiusJ.E.De LucaF.Cantalapiedra-NavarreteC.LiébanasG.LandaB.B.SubbotinS.A.CastilloP. (2016). A new stem nematode, Ditylenchus oncogenus n. sp. (Nematoda: Tylenchida), parasitizing sowthistle from Adriatic coast dunes in southern Italy. Journal of Helminthology 90, 152-165.

WendtK.R.SwartA.VrainT.C.WebsterJ.M. (1995). Ditylenchus africanus sp. n. from South Africa; a morphological and molecular characterization. Fundamental and Applied Nematology 18, 241-250.

WhiteheadA.G.HemmingJ.R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology 55, 25-38.

ZhangS.L.LiuG.K.JanssenT.ZhangS.S.XiaoS.LiS.T.CouvreurM.BertW. (2014). A new stem nematode associated with peanut pod rot in China: morphological and molecular characterization of Ditylenchus arachis n. sp. (Nematoda: Anguinidae). Plant Pathology 63, 1193-1206.


  • Line drawing of Ditylenchus persicus n. sp. A: Female entire body; B: Male entire body; C: Female lip region; D: Female pharyngeal region; E: Detail of basal bulb; F: Lateral field at mid-body; G: Female posterior body region; H: Male posterior region. (Scale bars = 30 μm.)

    View in gallery
  • Light micrographs of Ditylenchus persicus n. sp. A, B: Female anterior body region; C: Vulval region and post-vulval uterine sac (arrowhead); D: Lateral field at mid-body; E-G: Female pharyngeal region showing excretory pore (arrowheads) and basal pharyngeal bulb extension (arrows); H, I: Female tail region; J: Male tail region; K: Detail of spicules. (Scale bars = 10 μm.)

    View in gallery
  • Light micrographs of Ditylenchus persicus n. sp. A-C: Female pharyngeal region showing basal pharyngeal bulb extension (arrows); D: Female pharyngeal region showing excretory pore (arrowhead) and hemizonid (arrow). (Scale bars = 20 μm.)

    View in gallery
  • The 50% majority rule consensus trees from Bayesian analysis generated from the D2-D3 of 28S rRNA gene dataset of anguinid nematodes with the GTR + G model. Posterior probabilities ⩾ 70% are given for appropriate clades (– = posterior probability < 70%). Newly obtained sequence in bold letters. (Scale bar = expected changes per site.)

    View in gallery
  • The 50% majority rule consensus trees from Bayesian analysis generated from the ITS rRNA gene dataset of anguinid nematodes with the GTR + G model. Posterior probabilities ⩾ 70% are given for appropriate clades (– = posterior probability < 70%). Newly obtained sequence in bold letters. (Scale bar = expected changes per site.)

    View in gallery
  • The 50% majority rule consensus trees from Bayesian analysis generated from the partial 18S rRNA gene dataset of anguinid nematodes with the GTR + I + G model. Posterior probabilities ⩾ 70% are given for appropriate clades (– = posterior probability < 70%). Newly obtained sequence in bold letters. (Scale bar = expected changes per site.)

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 65 65 25
Full Text Views 40 40 14
PDF Downloads 4 4 0
EPUB Downloads 10 10 3