Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what’s the point?

In: Nematology

There has been a huge amount of work put into identifying and characterising effectors from plant-parasitic nematodes in recent years. Although this work has provided insights into the mechanisms by which nematodes can infect plants, the potential translational outputs of much of this research are not always clear. This short article will summarise how developments in effector biology have allowed, or will allow, new control strategies to be developed, drawing on examples from nematology and from other pathosystems.

  • AndolfoG.JupeF.WitekK.EtheringtonG.J.ErcolanoM.R.JonesJ.D.G. (2014). Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biology 14, 120. DOI: 10.1186/1471-2229-14-120

    • Search Google Scholar
    • Export Citation
  • BakhetiaM.UrwinP.E.AtkinsonH.J. (2008). Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. International Journal for Parasitology 38, 1589-1597. DOI: 10.1016/j.ijpara.2008.05.003

    • Search Google Scholar
    • Export Citation
  • BirdD.M.JonesJ.T.OppermanC.H.KikuchiT.DanchinE.G.J. (2015). Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142, S71-S84. DOI: 10.1017/S0031182013002163

    • Search Google Scholar
    • Export Citation
  • CarpentierJ.EsquibetM.FouvilleD.Manzanares-DauleuxM.J.KerlanM.C.GrenierE. (2012). The evolution of the Gp-Rbp-1 gene in Globodera pallida includes multiple selective replacements. Molecular Plant Pathology 13, 546-555. DOI: 10.1111/j.1364-3703.2011.00769.x

    • Search Google Scholar
    • Export Citation
  • ChapmanS.StevensL.J.BoevinkP.C.EngelhardtS.AlexanderC.J.HarrowerB.ChampouretN.McGeachyK.Van WeymersP.S.M.ChenX. (2014). Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a. PLoS ONE 9, e110158. DOI: 10.1371/journal.pone.0110158

    • Search Google Scholar
    • Export Citation
  • ChenL.HaoL.ParryM.A.J.PhillipsA.L.HuY.-G. (2014). Progress in TILLING as a tool for functional genomics and improvement of crops. Journal of Integrative Plant Biology 56, 425-443. DOI: 10.1111/jipb.12192

    • Search Google Scholar
    • Export Citation
  • ChenQ.RehmanS.SmantG.JonesJ.T. (2005). Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Molecular Plant-Microbe Interactions 18, 621-625. DOI: 10.1094/MPMI-18-0621

    • Search Google Scholar
    • Export Citation
  • CookeD.E.L.CanoL.M.RaffaeleS.BainR.A.CookeL.R.EtheringtonG.J.DeahlK.L.FarrerR.A.GilroyE.M.GossE.M. (2012). Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathogens 8, e1002940. DOI: 10.1371/journal.ppat.1002940

    • Search Google Scholar
    • Export Citation
  • CottonJ.A.LilleyC.J.JonesL.M.KikuchiT.ReidA.J.ThorpeP.TsaiI.J.BeasleyH.BlokV.C.CockP.J.A. (2014). The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology 15, R43. DOI: 10.1186/gb-2014-15-3-r43

    • Search Google Scholar
    • Export Citation
  • DanchinE.G.J.ArguelM.-J.Campan-FournierA.Perfus-BarbeochL.MaglianoM.RossoM.N.Da RochaM.Da SilvaC.NottetN.LabadieK. (2013). Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathogens 9, e1003745. DOI: 10.1371/journal.ppat.1003745

    • Search Google Scholar
    • Export Citation
  • DanchinE.G.J.GuzeevaE.A.MantelinS.BerepikiA.JonesJ.T. (2016). Horizontal gene transfer from bacteria has enabled the plant-parasitic nematode Globodera pallida to feed on host-derived sucrose. Molecular Biology and Evolution 33, 1571-1579. DOI: 10.1093/molbev/msw041

    • Search Google Scholar
    • Export Citation
  • DinhP.T.Y.BrownC.R.EllingA.A. (2014). RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and potato. Phytopathology 104, 1098-1106. DOI: 10.1094/PHYTO-03-14-0063-R

    • Search Google Scholar
    • Export Citation
  • DjameiA.SchipperK.RabeF.GhoshA.VinconV.KahntJ.OsorioS.TohgeT.FernieA.R.FeussnerI. (2011). Metabolic priming by a secreted fungal effector. Nature 478, 395-398. DOI: 10.1038/nature10454

    • Search Google Scholar
    • Export Citation
  • DuJ.VleeshouwersV.G.A.A. (2014). The do’s and don’ts of effectoromics. In: BirchP.R.J.JonesJ.T.BosJ.I.B. (Eds). Plant-pathogen interactions: methods and protocols. New York, NY, USA, Springer, pp.  257-268. DOI: 10.1007/978-1-62703-986-4

    • Search Google Scholar
    • Export Citation
  • Eves-van den AkkerS.LilleyC.J.JonesJ.T.UrwinP.E. (2014a). Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathogens 10, e1004391. DOI: 10.1371/journal.ppat.1004391

    • Search Google Scholar
    • Export Citation
  • Eves-van den AkkerS.LilleyC.J.DanchinE.G.J.RancurelC.CockP.J.A.UrwinP.E.JonesJ.T. (2014b). The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biology and Evolution 6, 2181-2194. DOI: 10.1093/gbe/evu171

    • Search Google Scholar
    • Export Citation
  • Eves-van den AkkerS.LaetschD.R.ThorpeP.LilleyC.J.DanchinE.G.J.Da RochaM.RancurelC.HolroydN.E.CottonJ.A.SzitenbergA. (2016). The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biology 17, 124. DOI: 10.1186/s13059-016-0985-1

    • Search Google Scholar
    • Export Citation
  • FireA.XuS.Q.MontgomeryM.K.KostasS.A.DriverS.E.MelloC.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. DOI: 10.1038/35888

    • Search Google Scholar
    • Export Citation
  • GaoB.AllenR.MaierT.R.DavisE.L.BaumT.J.HusseyR.S. (2003). The parasitome of the phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions 16, 720-726. DOI: 10.1094/MPMI.2003.16.8.720

    • Search Google Scholar
    • Export Citation
  • GillU.S.LeeS.MysoreK.S. (2015). Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathology 105, 580-587. DOI: 10.1094/PHYTO-11-14-0298-RVW

    • Search Google Scholar
    • Export Citation
  • GoverseA.SmantG. (2014). The activation and suppression of plant innate immunity by parasitic nematodes. Annual Review of Phytopathology 52, 243-265. DOI: 10.1146/annurev-phyto-102313-050118

    • Search Google Scholar
    • Export Citation
  • HaegemanA.JacobJ.VanholmeB.KyndtT.MitrevaM.GheysenG. (2009). Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an anguinid nematode. Molecular and Biochemical Parasitology 167, 32-40. DOI: 10.1016/j.molbiopara.2009.04.004

    • Search Google Scholar
    • Export Citation
  • HaegemanA.JosephS.GheysenG. (2011). Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology. Molecular and Biochemical Parasitology 178, 7-14. DOI: 10.1016/j.molbiopara.2011.04.001

    • Search Google Scholar
    • Export Citation
  • HaegemanA.MantelinS.JonesJ.T.GheysenG. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 492, 19-31. DOI: 10.1016/j.gene.2011.10.040

    • Search Google Scholar
    • Export Citation
  • HeweziT.HoweP.MaierT.R.HusseyR.S.MitchumM.G.DavisE.L.BaumT.J. (2008). Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20, 3080-3093. DOI: 10.1105/tpc.108.063065

    • Search Google Scholar
    • Export Citation
  • HofmannJ.WieczorekK.BlöchlA.GrundlerF.M.W. (2007). Sucrose supply to nematode-induced syncytia depends on the apoplasmic and symplasmic pathways. Journal of Experimental Botany 58, 1591-1601. DOI: 10.1093/jxb/erl285

    • Search Google Scholar
    • Export Citation
  • HuangG.GaoB.MaierT.R.AllenR.DavisE.L.BaumT.J.HusseyR.S. (2003). A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions 16, 376-381. DOI: 10.1094/MPMI.2003.16.5.376

    • Search Google Scholar
    • Export Citation
  • HuangG.DongR.AllenR.DavisE.L.BaumT.J.HusseyR.S. (2006a). A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Molecular Plant-Microbe Interactions 19, 463-470. DOI: 10.1094/MPMI-19-0463

    • Search Google Scholar
    • Export Citation
  • HuangG.AllenR.DavisE.L.BaumT.J.HusseyR.S. (2006b). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America 103, 14302-14306. DOI: 10.1073/pnas.0604698103

    • Search Google Scholar
    • Export Citation
  • HusseyR.S.MimsC.W. (1991). Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 162, 99-107. DOI: 10.1007/BF02562553

    • Search Google Scholar
    • Export Citation
  • IbizaV.P.CañizaresJ.NuezF. (2010). EcoTILLING in Capsicum species: searching for new virus resistances. BMC Genomics 11, 631. DOI: 10.1186/1471-2164-11-631

    • Search Google Scholar
    • Export Citation
  • JaouannetM.MaglianoM.ArguelM.-J.GourguesM.EvangelistiE.AbadP.RossoM.N. (2013). The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant-Microbe Interactions 26, 97-105. DOI: 10.1094/mpmi-05-12-0130-r

    • Search Google Scholar
    • Export Citation
  • JonesJ.D.G.DanglJ.L. (2006). The plant immune system. Nature 444, 323-329. DOI: 10.1038/nature05286

  • JonesJ.T.KumarA.PylypenkoL.A.ThirugnanasambandamA.CastelliL.ChapmanS.CockP.J.A.GrenierE.LilleyC.J.PhillipsM.S. (2009). Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology 10, 815-828. DOI: 10.1111/j.1364-3703.2009.00585.x

    • Search Google Scholar
    • Export Citation
  • JupeF.WitekK.VerweijW.ŚliwkaJ.PritchardL.EtheringtonG.J.MacleanD.CockP.J.A.LeggettR.M.BryanG.J. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal 76, 530-544. DOI: 10.1111/tpj.12307

    • Search Google Scholar
    • Export Citation
  • KayS.HahnS.MaroisE.HauseG.BonasU. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648-651. DOI: 10.1126/science.1144956

    • Search Google Scholar
    • Export Citation
  • KikuchiT.AikawaT.KosakaH.PritchardL.OguraN.JonesJ.T. (2007). Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Molecular and Biochemical Parasitology 155, 9-17. DOI: 10.1016/j.molbiopara.2007.05.002

    • Search Google Scholar
    • Export Citation
  • KingS.R.F.McLellanH.BoevinkP.C.ArmstrongM.R.BukharovaT.SukartaO.WinJ.KamounS.BirchP.R.J.BanfieldM.J. (2014). Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell 26, 1345-1359. DOI: 10.1105/tpc.113.120055

    • Search Google Scholar
    • Export Citation
  • KumarS.SchifferP.H.BlaxterM. (2012). 959 Nematode Genomes: a semantic wiki for coordinating sequencing projects. Nucleic Acids Research 40, D1295-D1300. DOI: 10.1093/nar/gkr826

    • Search Google Scholar
    • Export Citation
  • KyndtT.JiH.VanholmeB.GheysenG. (2013). Transcriptional silencing of RNAi constructs against nematode genes in Arabidopsis. Nematology 15, 519-528. DOI: 10.1163/15685411-00002698

    • Search Google Scholar
    • Export Citation
  • LacombeS.Rougon-CardosoA.SherwoodE.PeetersN.DahlbeckD.van EsseH.P.SmokerM.RallapalliG.ThommaB.P.H.J.StaskawiczB. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 28, 365-369. DOI: 10.1038/nbt.1613

    • Search Google Scholar
    • Export Citation
  • LeeA.H.-Y.MiddletonM.A.GuttmanD.S.DesveauxD. (2013). Phytopathogen type III effectors as probes of biological systems. Microbial Biotechnology 6, 230-240. DOI: 10.1111/1751-7915.12042

    • Search Google Scholar
    • Export Citation
  • LeeC.ChronisD.KenningC.PeretB.HeweziT.DavisE.L.BaumT.J.HusseyR.S.BennettM.MitchumM.G. (2011). The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiology 155, 866-880. DOI: 10.1104/pp.110.167197

    • Search Google Scholar
    • Export Citation
  • LeeS.HuttonS.WhitakerV. (2016). Mini review: potential applications of nonhost resistance for crop improvement. Frontiers in Plant Science 7, 997. DOI: 10.3389/fpls.2016.00997

    • Search Google Scholar
    • Export Citation
  • LenmanM.AliA.MühlenbockP.Carlson-NilssonU.LiljerothE.ChampouretN.VleeshouwersV.G.A.A.AndreassonE. (2016). Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theoretical and Applied Genetics 129, 105-115. DOI: 10.1007/s00122-015-2613-y

    • Search Google Scholar
    • Export Citation
  • LiG.HuangS.GuoX.LiY.YangY.GuoZ.KuangH.RietmanH.BergervoetM.VleeshouwersV.G.A.A. (2011). Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions 24, 1132-1142. DOI: 10.1094/MPMI-11-10-0276

    • Search Google Scholar
    • Export Citation
  • Lozano-TorresJ.L.WilbersR.H.P.WarmerdamS.Finkers-TomczakA.Diaz-GranadosA.van SchaikC.C.HelderJ.BakkerJ.GoverseA.SchotsA. (2014). Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. PLoS Pathogens 10, e1004569. DOI: 10.1371/journal.ppat.1004569

    • Search Google Scholar
    • Export Citation
  • MahfouzM.M.PiatekA.StewartC.N. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12, 1006-1014. DOI: 10.1111/pbi.12256

    • Search Google Scholar
    • Export Citation
  • MaierT.R.HeweziT.PengJ.BaumT.J. (2013). Isolation of whole esophageal gland cells from plant-parasitic nematodes for transcriptome analyses and effector identification. Molecular Plant-Microbe Interactions 26, 31-35. DOI: 10.1094/mpmi-05-12-0121-fi

    • Search Google Scholar
    • Export Citation
  • ManosalvaP.ManoharM.von ReussS.H.ChenS.KochA.KaplanF.ChoeA.MicikasR.J.WangX.KogelK.-H. (2015). Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications 6, 7795. DOI: 10.1038/ncomms8795

    • Search Google Scholar
    • Export Citation
  • MantelinS.ThorpeP.JonesJ.T. (2015). Suppression of plant defences by plant-parasitic nematodes. In: EscobarC.FenollC. (Eds). Advances in botanical research. Oxford, UK, Elsevier, pp.  325-337. DOI: 10.1016/bs.abr.2014.12.011

    • Search Google Scholar
    • Export Citation
  • McCallumC.M.ComaiL.GreeneE.A.HenikoffS. (2000). Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiology 123, 439-442. DOI: 10.1104/pp.123.2.439

    • Search Google Scholar
    • Export Citation
  • MeiY.ThorpeP.GuzhaA.HaegemanA.BlokV.C.MacKenzieK.GheysenG.JonesJ.T.MantelinS. (2015). Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2. Nematology 17, 409-424. DOI: 10.1163/15685411-00002875

    • Search Google Scholar
    • Export Citation
  • MejlhedeN.KyjovskaZ.BackesG.BurhenneK.RasmussenS.K.JahoorA. (2006). EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breeding 125, 461-467. DOI: 10.1111/j.1439-0523.2006.01226.x

    • Search Google Scholar
    • Export Citation
  • MitchumM.G.HusseyR.S.BaumT.J.WangX.EllingA.A.WubbenM.J.DavisE.L. (2013). Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199, 879-894. DOI: 10.1111/nph.12323

    • Search Google Scholar
    • Export Citation
  • NiuJ.LiuP.LiuQ.ChenC.GuoQ.YinJ.YangG.JianH. (2016). Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Scientific Reports 6, 19443. DOI: 10.1038/srep19443

    • Search Google Scholar
    • Export Citation
  • NoonJ.B.HeweziT.MaierT.R.SimmonsC.WeiJ.-Z.WuG.LlacaV.DeschampsS.DavisE.L.MitchumM.G. (2015). Eighteen new candidate effectors of the phytonematode Heterodera glycines produced specifically in the secretory esophageal gland cells during parasitism. Phytopathology 105, 1362-1372. DOI: 10.1094/PHYTO-02-15-0049-R

    • Search Google Scholar
    • Export Citation
  • PetitotA.-S.DereeperA.AgbessiM.Da SilvaC.GuyJ.ArdissonM.FernandezD. (2016). Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology 17, 860-874. DOI: 10.1111/mpp.12334

    • Search Google Scholar
    • Export Citation
  • PostmaW.J.SlootwegE.J.RehmanS.Finkers-TomczakA.TytgatT.O.G.van GelderenK.Lozano-TorresJ.L.RoosienJ.PompR.van SchaikC.C. (2012). The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiology 160, 944-954. DOI: 10.1104/pp.112.200188

    • Search Google Scholar
    • Export Citation
  • RehmanS.PostmaW.J.TytgatT.O.G.PrinsP.QinL.OvermarsH.VossenJ.H.SpiridonL.-N.PetrescuA.-J.GoverseA. (2009). A secreted SPRY domain-containing protein (SPRYSEC) from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NB-LRR protein from a susceptible tomato. Molecular Plant-Microbe Interactions 22, 330-340. DOI: 10.1094/MPMI-22-3-0330

    • Search Google Scholar
    • Export Citation
  • SaccoM.A.KoropackaK.GrenierE.JaubertM.J.BlanchardA.GoverseA.SmantG.MoffettP. (2009). The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathogens 5, e1000564. DOI: 10.1371/journal.ppat.1000564

    • Search Google Scholar
    • Export Citation
  • SchoonbeekH.J.WangH.H.StefanatoF.L.CrazeM.BowdenS.WallingtonE.ZipfelC.RidoutC.J. (2015). Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytologist 206, 606-613. DOI: 10.1111/nph.13356

    • Search Google Scholar
    • Export Citation
  • Schulze-LefertP.PanstrugaR. (2011). A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science 16, 117-125. DOI: 10.1016/j.tplants.2011.01.001

    • Search Google Scholar
    • Export Citation
  • SchwessingerB.BaharO.ThomasN.HoltonN.NekrasovV.RuanD.CanlasP.E.DaudiA.PetzoldC.J.SinganV.R. (2015). Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathogens 11, e1004809. DOI: 10.1371/journal.ppat.1004809

    • Search Google Scholar
    • Export Citation
  • SegretinM.E.PaisM.FranceschettiM.Chaparro-GarciaA.BosJ.I.B.BanfieldM.J.KamounS. (2014). Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Molecular Plant-Microbe Interactions 27, 624-637. DOI: 10.1094/MPMI-02-14-0040-R

    • Search Google Scholar
    • Export Citation
  • SmantG.JonesJ.T. (2011). Suppression of plant defences by nematodes. In: JonesJ.T.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Berlin, Germany, Springer, pp.  273-286. http://www.springer.com/gb/book/9789400704336

    • Search Google Scholar
    • Export Citation
  • SteuernagelB.PeriyannanS.K.Hernandez-PinzonI.WitekK.RouseM.N.YuG.HattaA.AyliffeM.BarianaH.JonesJ.D.G. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology 34, 652-655. DOI: 10.1038/nbt.3543

    • Search Google Scholar
    • Export Citation
  • StreubelJ.PesceC.HutinM.KoebnikR.BochJ.SzurekB. (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist 200, 808-819. DOI: 10.1111/nph.12411

    • Search Google Scholar
    • Export Citation
  • Thordal-ChristensenH. (2003). Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology 6, 351-357. DOI: 10.1016/S1369-5266(03)00063-3

    • Search Google Scholar
    • Export Citation
  • ThorpeP.MantelinS.CockP.J.A.BlokV.C.CokeM.C.Eves van den AkkerS.GuzeevaE.A.LilleyC.J.SmantG.ReidA.J. (2014). Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics 15, 923. DOI: 10.1186/1471-2164-15-923

    • Search Google Scholar
    • Export Citation
  • UrwinP.E.LilleyC.J.AtkinsonH.J. (2002). Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions 15, 747-752. DOI: 10.1094/MPMI.2002.15.8.747

    • Search Google Scholar
    • Export Citation
  • van SchieC.C.N.TakkenF.L.W. (2014). Susceptibility genes 101: how to be a good host. Annual Review of Phytopathology 52, 551-581. DOI: 10.1146/annurev-phyto-102313-045854

    • Search Google Scholar
    • Export Citation
  • Van WeymersP.S.M.BakerK.ChenX.HarrowerB.CookeD.E.L.GilroyE.M.BirchP.R.J.ThilliezG.J.A.LeesA.K.LynottJ.S. (2016). Utilizing ‘Omic’ technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections. Frontiers in Plant Science 7, 672. DOI: 10.3389/fpls.2016.00672

    • Search Google Scholar
    • Export Citation
  • Vega-ArreguínJ.C.JallohA.BosJ.I.B.MoffettP. (2014). Recognition of an Avr3a homologue plays a major role in mediating non-host resistance to Phytophthora capsici in Nicotiana species. Molecular Plant-Microbe Interactions 27, 770-780. DOI: 10.1094/MPMI-01-14-0014-R

    • Search Google Scholar
    • Export Citation
  • VleeshouwersV.G.A.A.RietmanH.KrenekP.ChampouretN.YoungC.OhS.-K.WangM.BouwmeesterK.VosmanB.VisserR.G.F. (2008). Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora Infestans avirulence genes. PLoS ONE 3, e2875. DOI: 10.1371/journal.pone.0002875

    • Search Google Scholar
    • Export Citation
  • WeiC.-F.KvitkoB.H.ShimizuR.CrabillE.AlfanoJ.R.LinN.-C.MartinG.B.HuangH.-C.CollmerA. (2007). A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. The Plant Journal 51, 32-46. DOI: 10.1111/j.1365-313X.2007.03126.x

    • Search Google Scholar
    • Export Citation
  • WubbenM.J.CallahanF.E.SchefflerB.S. (2010). Transcript analysis of parasitic females of the sedentary semi-endoparasitic nematode Rotylenchulus reniformis. Molecular and Biochemical Parasitology 172, 31-40. DOI: 10.1016/j.molbiopara.2010.03.011

    • Search Google Scholar
    • Export Citation
  • WulffB.B.H.HorvathD.M.WardE.R. (2011). Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14, 468-476. DOI: 10.1016/j.pbi.2011.04.002

    • Search Google Scholar
    • Export Citation
  • XueB.HamamouchN.LiC.HuangG.HusseyR.S.BaumT.J.DavisE.L. (2013). The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103, 175-181. DOI: 10.1094/PHYTO-07-12-0173-R

    • Search Google Scholar
    • Export Citation
  • YangY.JittayasothornY.ChronisD.WangX.CousinsP.ZhongG.-Y. (2013). Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots. PLoS ONE 8, e69463. DOI: 10.1371/journal.pone.0069463

    • Search Google Scholar
    • Export Citation
  • ZhangL.DaviesL.J.EllingA.A. (2015). A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. Molecular Plant Pathology 16, 48-60. DOI: 10.1111/mpp.12160

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 207 185 21
Full Text Views 278 247 0
PDF Downloads 23 18 0