Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean

in Nematology
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Phytohormones play important roles in plant defence against plant-parasitic nematodes, although the role of jasmonate (JA) in defence against root-knot nematodes (RKN, Meloidogyne spp.) in soybean (Glycine max) was unknown. In this study, two commercial soybean cultivars, cvs DongSheng1 (DS1) and SuiNong14 (SN14), were identified as susceptible and resistant, respectively, to M. hapla. Quantitative reverse transcription (qRT)-PCR analysis showed that the expression of genes involved in JA synthesis or signalling was significantly induced in both susceptible and resistant roots at 24 and 48 h after inoculation. Exogenous application of methyl jasmonate induced defence against RKN in susceptible cv. DS1, which might be involved in altered activities of defence-related enzymes (chitinase and β-1,3 glucanase) and pathogenesis-related gene PR5 expression. The results indicate that exogenous application of JA might be an alternative strategy to induce soybean resistance against RKN.

Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean

in Nematology



AlexanderD.GoodmanR.M.Gut-RellaM.GlascockC.WeymanK.FriedrichL.MaddoxD.Ahl-GoyP.LuntzT.WardE. (1993). Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogen-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America 907327-7331.

BachmannD.RezzonicoE.RetelskaD.ChetelatA.SchaererS.BeffaR. (1998). Improvement of potato resistance to Phytophthora infestans by overexpressing antifungal hydrolases. In: Signaling pathways and biological activities. American Society of Plant Physiologists 5th international workshop on pathogenesis-related proteins 29 March-2 April 1998 Aussois France American Society of Plant Physiologists p. 57. [Abstr.]

BhattaraiK.K.XieQ.G.MantelinS.BishnoiU.GirkeT.NavarreD.A.KaloshianI. (2008). Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Molecular Plant-Microbe Interactions 211205-1214. DOI: 10.1094/MPMI-21-9-1205

BollerT.GehreA.ManchF.VogrliU. (1983). Chitinase in bean leaves: induction by ET, purification, properties, and possible function. Planta 15722-31. DOI: 10.1007/BF00394536

BradfordM.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72248-254. DOI: 10.1016/0003-2697(76)90527-3

ByrdD.W.KirkpatrickT.BarkerK.R. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15142-143.

CooperW.R.JiaL.GogginL. (2005). Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Journal of Chemical Ecology 3191953-1967. DOI: 10.1007/s10886-005-6070-y

DasS.DeMasonD.A.EhlersJ.D.CloseT.J.RobertsP.A. (2008). Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 591305-1313. DOI: 10.1093/jxb/ern036

FanJ.W.HuC.L.ZhangL.N.LiZ.L.ZhaoF.K.WangS.H. (2015). Jasmonic acid mediates tomato’s response to root knot nematodes. Journal of Plant Growth Regulation 34196-205. DOI: 10.1007/s00344-014-9457-6

FeussnerI.WasternackC. (2002). The lipoxygenase pathway. Annual Review of Plant Biology 53275-297. DOI: 10.1146/annurev.arplant.53.100301.135248

FujimotoT.TomitakaY.AbeH.TsudaS.FutaiK.MizukuboT. (2011). Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. Journal of Plant Physiology 1681084-1097. DOI: 10.1016/j.jplph.2010.12.002

FullerV.L.LilleyC.J.UrwinP.E. (2008). Nematode resistance. New Phytologist 18027-44. DOI: 10.1111/j.1469-8137.2008.02508.x

GaoX.StarrJ.GoebelC.EngelberthJ.FeussnerI.TumlinsonJ.KolomietsM. (2008). Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Molecular Plant-Microbe Interactions 2198-109. DOI: 10.1094/MPMI-21-1-0098

GleasonC.LeelarasameeN.MeldauD.FeussnerI. (2016). OPDA has key role in regulating plant susceptibility to the root-knot nematode Meloidogyne hapla in Arabidopsis. Frontiers in Plant Science 71565. DOI: 10.3389/fpls.2016.01565

GoverseA.SmantG. (2014). The activation and suppression of plant innate immunity by parasitic nematodes. Annual Review of Phytopathology 52243-265. DOI: 10.1146/annurev-phyto-102313-050118

GuoY.Y.WangX.F.XuK.ZhangG.M. (2005). Effect of Meloidogyne incognita on the physiological and chemical changes in ginger. Acta Phytopathologica Sinica 3549-54.

GutjahrC.PaszkowskiU. (2009). Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Molecular Plant-Microbe Interactions 22763-772. DOI: 10.1094/MPMI-22-7-0763

HamamouchN.LiC.SeoP.J.ParkC.-M.DavisE.L. (2011). Expression of Arabidopsis pathogenesis-related genes during nematode infection. Molecular Plant Pathology 12355-364. DOI: 10.1111/j.1364-3703.2010.00675.x

HolbeinJ.GrundlerF.M.SiddiqueS. (2016). Plant basal resistance to nematodes: an update. Journal of Experimental Botany 672049-2061. DOI: 10.1093/jxb/erw005

HuC.ZhaoW.FanJ.LiZ.YangR.ZhaoF.WangJ.WangS. (2015). Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nematodes at high soil temperatures in tomatoes carrying Mi-1. Horticulture Environment and Biotechnology 56546-554. DOI: 10.1007/s13580-015-0146-6

HusseyR.S.BarkerK.R. (1973). Comparison of methods of collecting inoculation of Meloidogyne spp., including a new technique. Plant Disease Report 571025-1028.

IthalN.RwcknorJ.NettletonD.MaierT.BaumT.J.MitchumM.G. (2007). Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions 20510-525. DOI: 10.1094/MPMI-20-5-0510

JaouannetM.MaglianoM.ArguelM.J.GourguesM.EvangelistiE.AbadP.RossoM.N. (2013). The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant-Microbe Interactions 2697-105. DOI: 10.1094/MPMI-05-12-0130-R

JiH.GheysenG.DenilS.LindseyK.ToppingJ.F.NaharK.HaegemanA.De VosW.H.TrooskensG.Van CriekingeW. (2013). Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany 643885-3898. DOI: 10.1093/jxb/ert219

KammerhoferN.RadakovicZ.RegisJ.M.A.DobrevP.VankovaR.GrundlerF.M.W.SiddiqueS.HofmannJ.WieczorekK. (2015). Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytologist 207778-789. DOI: 10.1111/nph.13395

KongritD.JisakaM.IwanagaC.YokomichiH.KatsubeT.NishimuraK.NagayaT.YokotaK. (2007). Molecular cloning and functional expression of soybean allene oxide synthases. Bioscience Biotechnology and Biochemistry 71491-498. DOI: 10.1271/bbb.60537

KrishnaveniS.MuthukrishnanS.LiangG.H.WildeG.ManickamA. (1999). Induction of chitinases and β-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack, fungal infection and wounding. Plant Science 1449-16.

KumariC.DuttaT.K.BanakarP.RaoU. (2016). Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Scientific Reports 622846. DOI: 10.1038/srep22846

KyndtT.VieiraP.GheysenG.de Almeida-EnglerJ. (2013). Nematode feeding sites: unique organs in plant roots. Planta 238807-818. DOI: 10.1007/s00425-013-1923-z

LeoneA.MelilloM.T.Bleve-ZacheoT. (2001). Lipoxygenase in pea roots subjected to biotic stress. Plant Science 161703-717. DOI: 10.1016/S0168-9452(01)00458-7

LiC.HuY.HuaC.WangC. (2016). Identification of species and races of root-knot nematodes in greenhouse from Daqing city in Heilongjiang Province. Soils and Crops 5105-109.

LiR.J.RashotteA.M.SinghN.K.WeaverD.B.LawrenceK.S.LocyR.D. (2015). Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. Plant Cell Reports 345-22. DOI: 10.1007/s00299-014-1676-6

ManosalvaP.ManoharM.von ReussS.H.ChenS.KochA.KaplanF.ChoeA.MicikasR.J.WangX.KogelK.H. (2015). Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications 67795. DOI: 10.1038/ncomms8795

MelilloM.T.LeonettiP.BongiovanniM.Castagnone-SerenoP.Bleve-ZacheoT. (2006). Modulation of ROS activities and H2O2 accumulation during compatible and incompatible tomato/root-knot nematode interactions. New Phytologist 170501-512. DOI: 10.1111/j.1469-8137.2006.01724.x

MolinariS.FanelliE.LeonettiP. (2014). Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology 15255-264. DOI: 10.1111/mpp.12085

NaharK.KyndtT.De VleesschauwerD.HofteM.GheysenG. (2011). The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology 157305-316. DOI: 10.1104/pp.111.177576

NaharK.KyndtT.NzogelaY.B.GheysenG. (2012). Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytologist 196901-913. DOI: 10.1111/j.1469-8137.2012.04310.x

NaharK.KyndtT.HauseB.HofteM.GheysenG. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions 26106-115. DOI: 10.1094/MPMI-05-12-0108-FI

OmwegaC.O.ThomasonI.J.RobertsP.A. (1988). A nondestructive technique for screening bean germ plasm for resistance to Meloidogyne incognita. Plant Disease 72970-972.

OzalvoR.CabreraJ.EscobarC.ChristensenS.A.BorregoE.J.KolomietsM.V.CastresanaC.IberkleidI.BrownH.S. (2014). Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Molecular Plant Pathology 15319-332. DOI: 10.1111/mpp.12094

PieterseC.M.J.Leon-ReyesA.Van der EntS.Van WeesS.C.M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5308-316. DOI: 10.1038/nchembio.164

PortilloM.CabreraJ.LindseyK.ToppingJ.AndrésM.F.EmiliozziM.OliverosJ.C.García-CasadoG.SolanoR.KoltaiH. (2013). Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytologist 1971276-1290. DOI: 10.1111/nph.12121

SahebaniN.HadaviN.S. (2009). Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode (M. javanica) by several chemical and microbial elicitors. Biocontrol Science and Technology 19301-313. DOI: 10.1080/09583150902752012

SahebaniN.SadatH.N.ZadeF.O. (2011). The effects of beta-amino-butyric acid on resistance of cucumber against root-knot nematode, Meloidogyne javanica. Acta Physiologiae Plantarum 33443-450. DOI: 10.1007/s11738-010-0564-0

Sanz-AlferezS.MateosB.AlvaradoR.SanchezM. (2008). SAR induction in tomato plants is not effective against root-knot nematode infection. European Journal of Plant Pathology 120417-425. DOI: 10.1007/s10658-007-9225-6

SaravitzD.M.SiedowJ.N. (1996). The differential expression of wound-inducible lipoxygenase genes in soybean leaves. Plant Physiology 110287-299. DOI: 10.1104/pp.110.1.287

StenzelI.HauseB.MierschO.KurzT.MaucherH.WeichertH.ZieglerJ.FeussnerI.WasternackC. (2003). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Molecular Biology 51895-911. DOI: 10.1023/A:1023049319723

SwiecickaM.I.FilipeckiM.LontD.Van VlietJ.QinL.GoverseA.BakkerJ.HelderJ. (2009). Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. Molecular Plant Pathology 10487-500. DOI: 10.1111/j.1364-3703.2009.00550.x

TeixeiraM.A.WeiL.KaloshianI. (2016). Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytologist 211276-287. DOI: 10.1111/nph.13893

ThalerJ.S.OwenB.HigginsV.J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of life styles. Plant Physiology 135530-538. DOI: 10.1104/pp.104.041566

van LoonL.C.RepM.PieterseC.M.J. (2006). Significance of inducible defense related protein infected plants. Annual Review of Phytopathology 44135-162. DOI: 10.1146/annurev.phyto.44.070505.143425

VeronicoP.GianninoD.MellilloM.T.LeoneA.ReyesA.KennedyM.W.Bleve-ZacheoT. (2006). A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiology 1411045-1055. DOI: 10.1104/pp.106.081679

von MalekB.van der GraaffE.SchneitzK.KellerB. (2002). The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216187-192. DOI: 10.1007/s00425-002-0906-2

WangC.BrueningG.WilliamsonV.M. (2009). Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel. Journal of Chemical Ecology 351242-1251. DOI: 10.1007/s10886-009-9703-8

WesemaelW.ViaeneN.MoensM. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 133-16. DOI: 10.1163/138855410X526831

WuH.Y.DuanY.X. (2004). Interaction of chitinase isozyme and soybean resistant to Heterodera glycines. Acta Phytopathologica Sinica 34555-557.

YeD.Y.QianC.T.JiaY.Y.ZhangY.X.ChenJ.F. (2009). Cucumber and its related species for resistance to the sourthern root-knot nematode Meloidogyne incognita and respond to changes of enzyme. Acta Horticulturae Sinica 361755-1760.

ZhouJ.JiaF.SheoS.ZhangH.LiG.XiaX.ZhouY.YuJ.ShilK. (2015). Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Frontiers in Plant Science 6193. DOI: 10.3389/fpls.2015.00193

ZijlstraC. (2000). Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant Pathology 106283-290. DOI: 10.1023/A:1008765303364

ZinovievaS.V.VasyukovaN.I.UdalovaZ.V.GerasimovaN.G. (2013). The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919). Biology Bulletin 40297-303. DOI: 10.1134/S1062359013030126

ZuoY.H.KangZ.S.YangC.P.RuiH.Y.LouS.B.LiuX.R. (2009). Relationship between activities of β-1,3-glucanase and chitinase and resistance to phytophthora root knot in the soybean. Acta Phytopathologica Sinica 39600-607.


  • View in gallery

    A: The number of Meloidogyne hapla in soybean roots of cv. DongSheng1 (DS1) and cv. SuiNong14 (SN14) at 3 or 7 days post inoculation (dpi); B: The number of adult females and third- (J3) and fourth- (J4) stage juveniles in soybean roots of DS1 and SN14 at 21 dpi. Reproduction index is expressed as egg masses (C) or eggs (D) per root system of DS1 and SN14 at 35 dpi. Data are the means of one representative experiment (± SE). Asterisks represent statistically significant differences between DS1 and SN14 using Student’s t-test (P<0.05). The experiments were repeated three times with similar results.

  • View in gallery

    Analysis of the transcription levels of genes related to the jasmonate pathway by quantitative RT-PCR in roots of two soybean cultivars. The soybean cvs DongSheng1 (DS1) and SuiNong14 (SN14) were inoculated with Meloidogyne hapla, and the roots were harvested at 24 h and 48 h post inoculation (hpi). Data were normalised by using Ubiquitin-3 expression values (the uninfected control value set at 1). Error bars represent SE. Asterisks represent significant differences compared to the uninfected control using Student’s t-test (P<0.05).

  • View in gallery

    Effects of methyl jasmonate (MeJA) on the root-knot nematode (RKN) Meloidogyne hapla infection in cv. DongSheng1 (DS1) (A, C) and cv. SuiNong14 (SN14) (B, D). A, B: The number of egg masses at 35 days post inoculation; C, D: eggs per root system at 35 dpi. Values are the mean ± SE of one representative experiment. Asterisks represent significant differences compared to nematode treatment alone using Student’s t-test (P<0.05). The experiments were repeated three times with similar results.

  • View in gallery

    Effects of application of methyl jasmonate (MeJA) on expression of marker genes for jasmonate, ethylene and salicylic acid signals in cv. DongSheng1 (DS1) roots at 72 h post inoculation with Meloidogyne hapla. Soybean plants were pretreated with 500 μM MeJA for 24 h, and then each plant was inoculated with 400 second-stage juveniles (J2) of M. hapla. After 72 h, total RNA was prepared from the roots of control (without MeJA treatment and M. hapla invasion), M. hapla-infected plants (RKN), both M. hapla-infected and MeJA-treated plants (RKN + MeJA). Data were normalised by using Ubiquitin-3 expression values. Error bars represent standard error (SE). Bars with different letters indicate statistically significant differences using Tukey’s t-test (P<0.05).

  • View in gallery

    Activity of superoxide dismutase (SOD) (A), peroxidase (POD) (B), chitinase (C), and β-1,3 glucanase (D) in roots of two soybean cultivars (cvs DongSheng1 (DS1) and SuiNong14 (SN14)) treated or untreated with methyl jasmonate (MeJA), and at 14 dpi with 400 second-stage juveniles (J2) of Meloidogyne hapla. Values are the mean ± SE of one representative experiment. Bars with different letters indicate statistically significant differences among each treatment (lower case letters for DS1 and capital letters for SN14) using Tukey’s t-test (P<0.05). The experiments were repeated at least twice with similar results.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 58 58 12
Full Text Views 164 164 58
PDF Downloads 13 13 1
EPUB Downloads 5 5 0