Description of Globodera agulhasensis n. sp. (Nematoda: Heteroderidae) from South Africa

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


A new cyst nematode, herein described as Globodera agulhasensis n. sp., was found parasitising Senecio burchelli in the Western Cape Province, South Africa. Second-stage juveniles are characterised by a well developed stylet of 23.5 (22.5-24.8) μm with rounded to anteriorly flattened knobs. The dorsal pharyngeal gland outlet is 4.4 (3.5-6.5) μm posterior to the stylet knobs. The tail is 56 (49-64) μm long and the length of the hyaline region is 25 (19-29) μm. The cysts are characterised by their ovate to spherical shape, short neck, the presence of subcuticular punctations over the entire body and the absence of bullae or vulval bodies. Six to 12 cuticular ridges/lines are present on the outer surface of the cyst between the anus and vulval basin. Granek’s ratio is 1.7 (1.0-3.0), the vulval basin diam. 17.6 (11.7-26.1) μm and the distance between vulval basin and anus is 28.6 (19.1-47.0) μm. Males have a stylet length of 26.1 (24.4-27.7) μm and spicule length of 30.3 (27.2-33.8) μm with a rounded tip. Females have a stylet length of 22.1 (19.0-24.4) μm, a large median bulb almost filling the body diam., and a short vulval slit 4.2 (3.2-6.6) μm long. Phylogenetic relationships of G. agulhasensis n. sp. with other species of the genus, inferred from ITS-rRNA sequences by using the neighbour-joining (NJ), maximum likelihood (ML) and maximum parsimony method (MP), indicate that G. agulhasensis n. sp. is included in the clade of Globodera sp. that parasitise non-solanaceous plants, forming a monophyletic group with unidentified Globodera spp. from Portugal, G. millefolii and G. artemisiae. For diagnostic purposes, three restriction enzymes, Hpy8I, RsaI and XceI were selected as being able to discriminate between G. agulhasensis n. sp. and other Globodera spp. present in South Africa.

Description of Globodera agulhasensis n. sp. (Nematoda: Heteroderidae) from South Africa

in Nematology



BehrensE. (1975). Globodera Skarbilovic 1959 eine selbstandige Gattung in der Unterfamilie Heteroderinae Skarbilovic 1947 (Nematoda: Heteroderidae). In: Vortagstagung zu Aktuellen Problemen der Phytonematologie am 29.5.1975 in Rostock. Manuskriptdruck der Vorträge. Biologische Gesellschaft der DDR Sektion Phytopathologie und Universitat Rostock pp. 12-26.

CobbG.S.TaylorA.L. (1953). Heterodera leptonepia n. sp., a cyst-forming nematode found in soil with stored potatoes. Proceedings of the Helminthological Society of Washington 2013-15.

CowlingR.M.RichardsonD.M.MustartP.J. (2004). Fynbos. In: CowlingR.M.RichardsonD.M.PierceS.M. (Eds). Vegetation of southern Africa. Cambridge, UKCambridge University Press pp.  99-130.

EroshenkoA.S.KazachenkoI.P. (1972). [ Heterodera artemisiae sp. (Nematoda: Heteroderidae) – a new species of cyst-forming nematode from the Primorsk Territory.] Parazitologija 6166-170.

EvansK.RoweJ.A. (1998). Distribution and economic importance. In: SharmaS.B. (Ed.). The cyst nematodes. Dordrecht, The NetherlandsKluwer Academic Publishers pp.  1-30.

FelsensteinJ. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39783-791.

FerrisV.R.KrallE.FaghihiJ.FerrisJ.M. (1999). Phylogenetic relationships of Globodera millefolii, G. artemisiae, and Cactodera salina based on ITS region of ribosomal DNA. Journal of Nematology 31498-507.

FrancoN.F.Cid del Prado VeraI.Lamothe-ArgumedoR. (2000). Globodera bravoae sp. n. (Tylenchida: Heteroderidae) from Mexico. International Journal of Nematology 10169-176.

GoldenA.M.KlindićO. (1973). Heterodera achilleae n. sp. (Nematoda, Heteroderidae) from yarrow in Yugoslavia. Journal of Nematology 5196-201.

GrenierE.FournetS.PetitE.AnthoineG. (2010). A cyst nematode ‘species factory’ called the Andes. Nematology 12163-169.

HandooZ.A.CartaL.K.SkantarA.M.ChitwoodD.J. (2012). Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. Journal of Nematology 4440-57.

HirschmannH.RiggsR.D. (1969). Heterodera betulae n. sp. (Heteroderidae), a cyst-forming nematode from river birch. Journal of Nematology 1169-179.

KatohK.KumaK.TohH.MiyataT. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33511-518.

KimuraM. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16111-120.

KirjanovaE.S.BorisenkoA.V. (1975). [ A cyst forming nematode – Heterodera mali sp. n. – a new species of parasite of apple trees in the Kazakhstan.] Parasitologiya 9335-338.

KirjanovaE.S.KrallE.L. (1965). [ The milfoil cyst nematode Heterodera millefolii n. sp. (Nematoda: Heteroderidae).] Eesti NSV Teaduste Akadeemia Toimetised Bioloogiline Seeria 14(3) 325-328.

KnoetzeR.SwartA. (2014). A survey of the Cape Floristic Region of South Africa for the presence of cyst nematodes (Nematoda: Heteroderidae). Zootaxa 3893429-437.

KnoetzeR.SwartA.TiedtL.R. (2013). Description of Globodera capensis n. sp. (Nematoda: Heteroderidae) from South Africa. Nematology 15233-250.

LaxP.DoucetM.E. (2002). New process for preparing heteroderid cysts for scanning electron microscopy. Nematology 4445-447.

LownsberyB.F.LownsberyJ.W. (1954). Heterodera tabacum, a parasite of solanaceous plants in Connecticut. Proceedings of the Helminthological Society of Washington 2143-46.

MadaniM.SubbotinS.A.WardL.J.LiX.De BoerS.H. (2010). Molecular characterization of Canadian populations of potato cyst nematodes, Globodera rostochiensis and G. pallida using ribosomal nuclear RNA and cytochrome b genes. Canadian Journal of Plant Pathology 32252-263.

ManduricS.AnderssonS. (2004). The identity of a Swedish Globodera (Nematoda: Heteroderidae) population, following comparisons with known populations of G. artemisiae (Eroshenko & Kazachenko, 1972) Behrens, 1975. Russian Journal of Nematology 1239-44.

MulveyR.H.StoneA.R. (1976). Description of Punctodera matadorensis n. gen., n. sp. (Nematoda: Heteroderidae) from Saskatchewan, with lists of species and generic diagnosis of Globodera (n. rank), Heterodera and Sarisodera. Canadian Journal of Zoology 54772-785.

NeiM.KumarS. (2000). Molecular evolution and phylogenetics. Oxford, UKOxford University Press.

NetscherC.SeinhorstJ.W. (1969). Propionic acid better than acetic acid for killing nematodes. Nematologica 15286.

PicardD.SempereT.PlantardO. (2008). Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa. Earth and Planetary Science Letters 271326-336.

SaboA.ReisL.G.L.KrallE.Mundo-OcampoM.FerrisV.R. (2002). Phylogenetic relationships of a distinct species of Globodera from Portugal and two Punctodera species. Journal of Nematology 34263-266.

SaitouN.NeiM. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4406-425.

SeinhorstJ.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 467-69.

SircaS.UrekG. (2004). Morphometrical and ribosomal DNA sequence analysis of Globodera rostochiensis and Globodera achilleae from Slovenia. Russian Journal of Nematology 12161-168.

SkantarA.M.HandooZ.A.CartaL.K.ChitwoodD.J. (2007). Morphological and molecular identification of Globodera pallida associated with potato in Idaho. Journal of Nematology 39133-144.

SkarbilovichT.S. (1959). On the structure of the systematics of nematodes of the order Tylenchida Thorne, 1949. Acta Parasitologica Polonica 7117-132.

StoneA.R. (1973). Heterodera pallida n. sp. (Nematoda: Heteroderidae), a second species of potato cyst nematode. Nematologica 18591-606.

StoneA.R. (1979). Co-evolution of nematodes and plants. Symbolae Botanicae Uppsala 2246-61.

StoneA.R. (1983). Three approaches to the status of a species complex with a revision of some Globodera (Nematoda: Heteroderidae). In: StoneA.R.PlattH.M.KhalilL.F. (Eds). Concepts in nematode systematics. Systematics Association Special Volume SeriesVol. 22. London, UKAcademic Press pp.  221-233.

SturhanD. (2002). Notes on the genus Cactodera Krall & Krall, 1978 and proposal of Betulodera betulae gen. nov., comb. nov. (Nematoda: Heteroderidae). Nematology 4875-882.

SturhanD.WoutsW.M.SubbotinS.A. (2007). An unusual cyst nematode from New Zealand, Paradolichodera tenuissima gen. n., sp. n. (Tylenchida: Heteroderidae). Nematology 9561-571.

SubbotinS.A.VierstraeteA.De LeyP.RoweJ.WaeyenbergeL.MoensM.VanfleterenJ.R. (2001). Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetics and Evolution 211-16.

SubbotinS.A.Mundo-OcampoM.BaldwinJ.G. (2010). Systematics of cyst nematodes (Nematoda: Heteroderidae). Nematology Monographs and PerspectivesVol. 8A (Series editors: HuntD.J.PerryR.N.). Leiden, The NetherlandsBrill.

SubbotinS.A.Cid Del Prado VeraI.Mundo-OcampoM.BaldwinJ.G. (2011). Identification, phylogeny and phylogeography of circumfenestrate cyst nematodes (Nematoda: Heteroderidae) as inferred from analysis of ITS-rDNA. Nematology 13805-824.

SzalanskiA.L.SuiD.D.HarrisT.S.PowersT.O. (1997). Identification of cyst nematodes of agronomic and regulatory concern with PCR-RFLP of ITS1. Journal of Nematology 29255-267.

TamuraK.StecherG.PetersonD.FilipskiA.KumarS. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 302725-2729.

Tanha MaafiZ.SubbotinS.A.MoensM. (2003). Molecular identification of cyst-forming nematodes (Heteroderidae) from Iran and a phylogeny based on ITS-rDNA sequences. Nematology 599-111.

ThorneG. (1928). Heterodera punctata n. sp., a nematode parasite on wheat roots from Saskatchewan. Scientific Agriculture 8707-710.

UeharaT.KushidaA.ItouK.NarabuT.MomotaY. (2005). Discrimination of three cyst-forming nematodes of the genus Globodera (Nematode: Heteroderidae) from Japan based on PCR-RFLP of ribosomal DNA. Applied Entomology and Zoology (Japan) 40537-543.

VrainT.C.WakarchuckD.A.LèvesqueA.C.HamiltonR.I. (1992). Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology 15563-573.

WollenweberH.W. (1923). Krankheiten und Beschädigungen der Kartoffel. Arbeiten des Forschungsinstitutes für KartoffelbauHeft 7. Berlin, GermanyPaul Parey.

WoutsW.M. (1984). Globodera zelandica n. sp. (Nematoda: Heteroderidae) from New Zealand, with a key to the species of the genus Globodera. New Zealand Journal of Zoology 11129-135.


  • View in gallery

    The type locality of Globodera agulhasensis n. sp. in the Cape Floristic Region of South Africa. The sampling location is indicated by an X.

  • View in gallery

    Globodera agulhasensis n. sp. A: Whole cysts; B: Cyst vulval basin; C: Female anterior region; D: Male anterior region; E: Male tail region; F: J2 anterior region; G: J2 tail region.

  • View in gallery

    Photomicrographs of females and cysts of Globodera agulhasensis n. sp. A: Female; B: Female anterior region showing median bulb; C: Female anterior region showing stylet and lip annuli; D: Female vulval basin showing cuticular ornamentation; E: Female vulval basin showing tubercles; F: Female vulval basin from the inside, showing vulval slit; G: Cyst vulval basin showing cuticular ornamentation; H: Cyst vulval basin showing V-shaped subsurface mark in cuticle; I: Females on roots. Abbreviations: a = anus; c = cuticular ridges; f = vulval fenestra; k = stylet knobs; s = stylet; mb = median bulb; t = tubercles; v = vulval slit. Scale bars: A, I = 100 μm; B-H = 10 μm. This figure is published in colour in the online edition of this journal, which can be accessed via

  • View in gallery

    Photomicrographs of second-stage juveniles and males of Globodera agulhasensis n. sp. A-C: Anterior region of second-stage juveniles; D-F: Tail region of second-stage juveniles; G, H: Anterior region of male; I: Tail region of male. Abbreviations: a = anus; g = gubernaculum; h = hyaline region; s = stylet; sp = spicule; k = knobs; mb = median bulb. Scale bars = 10 μm. This figure is published in colour in the online edition of this journal, which can be accessed via

  • View in gallery

    Cysts of Globodera agulhasensis n. sp. (SEM). A: Detail of anus; B: Cuticular ornamentation in vicinity of anus; C: Punctations on cyst wall; D: Internal morphology of cyst wall; E: External morphology of cyst wall; F: Cross section of cyst wall. Abbreviations: a = anus; c = cuticular ridges; f = vulval fenestra; p = punctations.

  • View in gallery

    Second-stage juveniles of Globodera agulhasensis n. sp. (SEM). A, B: Head (A: Lateral view; B: Frontal view); C: Mid-body, showing lateral lines; D-F: Tail (D: Lateral view of entire tail; E: Ventral view of tail area showing anus (arrow); F: Lateral view of ending of lateral lines showing phasmid (arrow)).

  • View in gallery

    RsaI digestion products of the amplified ITS1 region of Globodera spp. A: 100 bp marker (Fermentas); B: G. rostochiensis; C: G. capensis; D: G. agulhasensis n. sp.; E: WK1.

  • View in gallery

    Phylogenetic relationships of Globodera species as inferred from ITS-rRNA sequences by using the neighbour-joining method. The optimal tree with the sum of branch length = 0.66840077 is shown. Tree drawn to scale with branch lengths in same units as those of evolutionary distances used to infer phylogenetic tree. The percentage of replicate trees in which associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches.

  • View in gallery

    Phylogenetic relationships of Globodera species as inferred from ITS-rRNA sequences by using the maximum likelihood method. The tree with the highest log likelihood (−4197.4930) is shown. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The percentage of trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches.

  • View in gallery

    Phylogenetic relationships of Globodera species as inferred from ITS-rRNA sequences by using the maximum parsimony method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analysed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test is shown next to the branches.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 39 39 13
Full Text Views 62 62 41
PDF Downloads 7 7 3
EPUB Downloads 0 0 0